-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_lstm.py
200 lines (173 loc) · 8.45 KB
/
test_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import torch
from pytorch_layer_test_class import PytorchLayerTest
class aten_lstm(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_layers, has_bias, bidirectional, batch_first):
torch.nn.Module.__init__(self)
self.lstm = torch.nn.LSTM(input_size,
hidden_size,
num_layers,
has_bias,
batch_first,
bidirectional=bidirectional)
def forward(self, input_tensor, h0, c0):
return self.lstm(input_tensor, (h0, c0))
class aten_lstm_packed(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_layers, has_bias, bidirectional, batch_first):
torch.nn.Module.__init__(self)
self.rnn = torch.nn.LSTM(input_size=input_size,
hidden_size=hidden_size,
num_layers=num_layers,
batch_first=batch_first,
bidirectional=bidirectional,
bias=has_bias,
)
self.batch_first = batch_first
def forward(self, seq, lengths):
seq1 = torch.nn.utils.rnn.pack_padded_sequence(seq,
lengths,
batch_first=self.batch_first)
seq2, hid2 = self.rnn(seq1)
seq = torch.nn.utils.rnn.pad_packed_sequence(seq2,
batch_first=self.batch_first)[0]
return seq, hid2
class aten_gru(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_layers, has_bias, bidirectional, batch_first):
torch.nn.Module.__init__(self)
self.gru = torch.nn.GRU(input_size,
hidden_size,
num_layers,
has_bias,
batch_first,
bidirectional=bidirectional)
def forward(self, input_tensor, h0):
return self.gru(input_tensor, h0)
class aten_rnn(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_layers, has_bias, bidirectional, batch_first, nonlinearity):
torch.nn.Module.__init__(self)
self.rnn = torch.nn.RNN(input_size,
hidden_size,
num_layers,
nonlinearity=nonlinearity,
bias=has_bias,
batch_first=batch_first,
bidirectional=bidirectional)
def forward(self, input_tensor, h0):
return self.rnn(input_tensor, h0)
class TestLSTM(PytorchLayerTest):
def _prepare_input(self):
n = self.num_layers
if self.bidirectional:
n *= 2
if self.batch_first:
input = np.random.randn(3, 5, self.input_size).astype(np.float32)
else:
input = np.random.randn(5, 3, self.input_size).astype(np.float32)
h0 = np.random.randn(n, 3, self.hidden_size).astype(np.float32)
c0 = np.random.randn(n, 3, self.hidden_size).astype(np.float32)
return (input, h0, c0)
@pytest.mark.parametrize("input_size,hidden_size", [(10, 20),])
@pytest.mark.parametrize("num_layers", [1, 2, 7])
@pytest.mark.parametrize("has_bias", [True, False])
@pytest.mark.parametrize("bidirectional", [True, False])
@pytest.mark.parametrize("batch_first", [True, False])
@pytest.mark.nightly
@pytest.mark.precommit
def test_lstm(self, input_size, hidden_size, num_layers, has_bias, bidirectional, batch_first, ie_device, precision, ir_version):
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.bidirectional = bidirectional
self.batch_first = batch_first
self._test(aten_lstm(input_size, hidden_size, num_layers, has_bias, bidirectional, batch_first), None, "aten::lstm",
ie_device, precision, ir_version, trace_model=True)
class TestLSTMPacked(PytorchLayerTest):
def _prepare_input(self):
batch = 15
if self.batch_first:
input = np.random.randn(
batch, 50, self.input_size).astype(np.float32)
else:
input = np.random.randn(
50, batch, self.input_size).astype(np.float32)
lengths = np.array(list(sorted(np.random.randint(
1, 50, [batch - 1]).tolist() + [50], reverse=True)), dtype=np.int32)
return (input, lengths)
@pytest.mark.parametrize("input_size,hidden_size", [(10, 20),])
@pytest.mark.parametrize("num_layers", [1, 2, 7])
@pytest.mark.parametrize("has_bias", [True, False])
@pytest.mark.parametrize("bidirectional", [True, False])
@pytest.mark.parametrize("batch_first", [True, False])
@pytest.mark.nightly
@pytest.mark.precommit
def test_lstm_packed(self, input_size, hidden_size, num_layers, has_bias, bidirectional, batch_first, ie_device, precision, ir_version):
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.bidirectional = bidirectional
self.batch_first = batch_first
self._test(aten_lstm_packed(input_size, hidden_size, num_layers, has_bias, bidirectional, batch_first),
None,
"aten::lstm",
ie_device,
precision,
ir_version,
trace_model=True,
dynamic_shapes=False # ticket 131432
)
class TestGRU(PytorchLayerTest):
def _prepare_input(self):
n = self.num_layers
if self.bidirectional:
n *= 2
if self.batch_first:
input = np.random.randn(3, 5, self.input_size).astype(np.float32)
else:
input = np.random.randn(5, 3, self.input_size).astype(np.float32)
h0 = np.random.randn(n, 3, self.hidden_size).astype(np.float32)
return (input, h0)
@pytest.mark.parametrize("input_size,hidden_size", [(10, 20),])
@pytest.mark.parametrize("num_layers", [1, 2, 7])
@pytest.mark.parametrize("has_bias", [True, False])
@pytest.mark.parametrize("bidirectional", [True, False])
@pytest.mark.parametrize("batch_first", [True, False])
@pytest.mark.nightly
@pytest.mark.precommit
def test_gru(self, input_size, hidden_size, num_layers, has_bias, bidirectional, batch_first, ie_device, precision, ir_version):
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.bidirectional = bidirectional
self.batch_first = batch_first
self._test(aten_gru(input_size, hidden_size, num_layers, has_bias, bidirectional, batch_first), None, "aten::gru",
ie_device, precision, ir_version, trace_model=True)
class TestRNN(PytorchLayerTest):
def _prepare_input(self):
n = self.num_layers
if self.bidirectional:
n *= 2
if self.batch_first:
input = np.random.randn(3, 5, self.input_size).astype(np.float32)
else:
input = np.random.randn(5, 3, self.input_size).astype(np.float32)
h0 = np.random.randn(n, 3, self.hidden_size).astype(np.float32)
return (input, h0)
@pytest.mark.parametrize("input_size,hidden_size", [(10, 20),])
@pytest.mark.parametrize("num_layers", [1, 2, 7])
@pytest.mark.parametrize("has_bias", [True, False])
@pytest.mark.parametrize("bidirectional", [True, False])
@pytest.mark.parametrize("batch_first", [True, False])
@pytest.mark.parametrize("nonlinearity", ["tanh", "relu"])
@pytest.mark.nightly
@pytest.mark.precommit
def test_rnn(self, input_size, hidden_size, num_layers, has_bias, bidirectional, batch_first, nonlinearity, ie_device, precision, ir_version):
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.bidirectional = bidirectional
self.batch_first = batch_first
self._test(aten_rnn(input_size, hidden_size, num_layers, has_bias, bidirectional, batch_first, nonlinearity), None, f"aten::rnn_{nonlinearity}",
ie_device, precision, ir_version, trace_model=True)