-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_mul.py
324 lines (262 loc) · 12.3 KB
/
test_mul.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import torch
from pytorch_layer_test_class import PytorchLayerTest
class TestMul(PytorchLayerTest):
def _prepare_input(self):
return (self.input_array.astype(self.input_type), self.other_array.astype(self.other_type))
def create_model(self):
class aten_mul(torch.nn.Module):
def __init__(self):
super(aten_mul, self).__init__()
def forward(self, input_tensor, other_tensor):
return torch.mul(input_tensor, other_tensor)
ref_net = None
return aten_mul(), ref_net, "aten::mul"
@pytest.mark.parametrize(("input_array", "other_array"), [
[np.array([0.2015, -0.4255, 2.6087]), np.array(100)],
[np.array([[1.1207], [-0.3137], [0.0700], [0.8378]]),
np.array([[0.5146, 0.1216, -0.5244, 2.2382]])],
])
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_torch_export
def test_mul_pt_spec(self, input_array, other_array, ie_device, precision, ir_version):
self.input_array = input_array
self.input_type = np.float32
self.other_array = other_array
self.other_type = np.float32
self._test(*self.create_model(), ie_device, precision, ir_version, use_convert_model=True)
class TestMulTypes(PytorchLayerTest):
def _prepare_input(self):
if len(self.lhs_shape) == 0:
return (torch.randn(self.rhs_shape).to(self.rhs_type).numpy(),)
elif len(self.rhs_shape) == 0:
return (torch.randn(self.lhs_shape).to(self.lhs_type).numpy(),)
return (torch.randn(self.lhs_shape).to(self.lhs_type).numpy(),
torch.randn(self.rhs_shape).to(self.rhs_type).numpy())
def create_model(self, lhs_type, lhs_shape, rhs_type, rhs_shape):
class aten_mul(torch.nn.Module):
def __init__(self, lhs_type, lhs_shape, rhs_type, rhs_shape):
super().__init__()
self.lhs_type = lhs_type
self.rhs_type = rhs_type
if len(lhs_shape) == 0:
self.forward = self.forward1
elif len(rhs_shape) == 0:
self.forward = self.forward2
else:
self.forward = self.forward3
def forward1(self, rhs):
return torch.mul(torch.tensor(3).to(self.lhs_type), rhs.to(self.rhs_type))
def forward2(self, lhs):
return torch.mul(lhs.to(self.lhs_type), torch.tensor(3).to(self.rhs_type))
def forward3(self, lhs, rhs):
return torch.mul(lhs.to(self.lhs_type), rhs.to(self.rhs_type))
ref_net = None
return aten_mul(lhs_type, lhs_shape, rhs_type, rhs_shape), ref_net, "aten::mul"
@pytest.mark.parametrize(("lhs_type", "rhs_type"),
[[torch.int32, torch.int64],
[torch.int32, torch.float32],
[torch.int32, torch.float64],
[torch.int64, torch.int32],
[torch.int64, torch.float32],
[torch.int64, torch.float64],
[torch.float32, torch.int32],
[torch.float32, torch.int64],
[torch.float32, torch.float64],
[torch.float16, torch.uint8],
[torch.uint8, torch.float16],
[torch.float16, torch.int32],
[torch.int32, torch.float16],
[torch.float16, torch.int64],
[torch.int64, torch.float16]
])
@pytest.mark.parametrize(("lhs_shape", "rhs_shape"), [([2, 3], [2, 3]),
([2, 3], []),
([], [2, 3]),
])
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_torch_export
def test_mul_types(self, ie_device, precision, ir_version, lhs_type, lhs_shape, rhs_type, rhs_shape):
self.lhs_type = lhs_type
self.lhs_shape = lhs_shape
self.rhs_type = rhs_type
self.rhs_shape = rhs_shape
self._test(*self.create_model(lhs_type, lhs_shape, rhs_type, rhs_shape),
ie_device, precision, ir_version, freeze_model=False, trace_model=True)
class TestMulBool(PytorchLayerTest):
def _prepare_input(self):
input_tensor = torch.randint(0, 2, size=(1, 100)).numpy()
other_tensor = torch.randint(0, 2, size=(1, 100)).numpy()
return (input_tensor, other_tensor)
def create_model(self, lhs_type, rhs_type):
class aten_mul(torch.nn.Module):
def __init__(self):
super().__init__()
self.lhs_type = lhs_type
self.rhs_type = rhs_type
def forward(self, input_tensor, other_tensor):
return torch.mul(input_tensor.to(self.lhs_type), other_tensor.to(self.rhs_type))
ref_net = None
return aten_mul(), ref_net, "aten::mul"
@pytest.mark.parametrize(("lhs_type", "rhs_type"), [
(torch.bool, torch.bool),
(torch.bool, torch.int32),
(torch.int32, torch.bool),
(torch.float32, torch.bool),
])
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_torch_export
def test_mul_bool(self, lhs_type, rhs_type, ie_device, precision, ir_version):
self._test(*self.create_model(lhs_type, rhs_type), ie_device, precision, ir_version, use_convert_model=True)
class TestMulWithLhsComplex(PytorchLayerTest):
def _prepare_input(self):
rhs_input_shape = [3, 4, 5]
lhs_input_shape = rhs_input_shape + [2]
return [torch.randint(-10, 10, lhs_input_shape).to(self.lhs_type).numpy(),
torch.randint(-10, 10, rhs_input_shape).to(self.rhs_type).numpy()]
def create_model(self, op_type):
class aten_mul(torch.nn.Module):
def __init__(self, op) -> None:
super().__init__()
self.forward = self.forward1 if op == "mul" else self.forward2
def forward1(self, lhs, rhs):
lhs = torch.view_as_complex(lhs)
res = torch.mul(lhs, rhs)
return torch.view_as_real(res)
def forward2(self, lhs, rhs):
lhs = torch.view_as_complex(lhs)
lhs.mul_(rhs)
return torch.view_as_real(lhs)
ref_net = None
return aten_mul(op_type), ref_net, f"aten::{op_type}"
@pytest.mark.parametrize("lhs_type",
[torch.float32,
torch.float64])
@pytest.mark.parametrize("rhs_type",
[torch.int8,
torch.int32,
torch.int64,
torch.float32,
torch.float64])
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.parametrize("op_type", ["mul", "mul_"])
def test_mul(self, ie_device, precision, ir_version, lhs_type, rhs_type, op_type):
self.lhs_type = lhs_type
self.rhs_type = rhs_type
self._test(*self.create_model(op_type), ie_device, precision, ir_version,
use_convert_model=True)
class TestMulWithLhsComplex(PytorchLayerTest):
def _prepare_input(self):
rhs_input_shape = [3, 4, 5]
lhs_input_shape = rhs_input_shape + [2]
return [torch.randint(-10, 10, lhs_input_shape).to(self.lhs_type).numpy(),
torch.randint(-10, 10, rhs_input_shape).to(self.rhs_type).numpy()]
def create_model(self, op_type):
class aten_mul(torch.nn.Module):
def __init__(self, op) -> None:
super().__init__()
self.forward = self.forward1 if op == "mul" else self.forward2
def forward1(self, lhs, rhs):
lhs = torch.view_as_complex(lhs)
res = torch.mul(lhs, rhs)
return torch.view_as_real(res)
def forward2(self, lhs, rhs):
lhs = torch.view_as_complex(lhs)
lhs.mul_(rhs)
return torch.view_as_real(lhs)
ref_net = None
return aten_mul(op_type), ref_net, f"aten::{op_type}"
@pytest.mark.parametrize("lhs_type",
[torch.float32,
torch.float64])
@pytest.mark.parametrize("rhs_type",
[torch.int8,
torch.int32,
torch.int64,
torch.float32,
torch.float64])
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.parametrize("op_type", ["mul", "mul_"])
def test_mul(self, ie_device, precision, ir_version, lhs_type, rhs_type, op_type):
self.lhs_type = lhs_type
self.rhs_type = rhs_type
self._test(*self.create_model(op_type), ie_device, precision, ir_version,
use_convert_model=True)
class TestMulWithRhsComplex(PytorchLayerTest):
def _prepare_input(self):
lhs_input_shape = [3, 4, 5]
rhs_input_shape = lhs_input_shape + [2]
return [torch.randint(0, 10, lhs_input_shape).to(self.lhs_type).numpy(),
torch.randint(0, 10, rhs_input_shape).to(self.rhs_type).numpy()]
def create_model(self):
class aten_mul(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, lhs, rhs):
rhs = torch.view_as_complex(rhs)
res = torch.mul(lhs, rhs)
return torch.view_as_real(res)
ref_net = None
return aten_mul(), ref_net, f"aten::mul"
@pytest.mark.parametrize("rhs_type",
[torch.float32,
torch.float64])
@pytest.mark.parametrize("lhs_type",
[torch.uint8,
torch.int8,
torch.int32,
torch.int64,
torch.float32,
torch.float64])
@pytest.mark.nightly
@pytest.mark.precommit
def test_mul(self, ie_device, precision, ir_version, lhs_type, rhs_type):
self.lhs_type = lhs_type
self.rhs_type = rhs_type
self._test(*self.create_model(), ie_device, precision, ir_version,
use_convert_model=True)
class TestMulWithBothComplex(PytorchLayerTest):
def _prepare_input(self):
input_shape = [3, 4, 5]
input_shape = input_shape + [2]
return [torch.randint(0, 10, input_shape).to(self.lhs_type).numpy(),
torch.randint(0, 10, input_shape).to(self.rhs_type).numpy()]
def create_model(self, op_type):
class aten_mul(torch.nn.Module):
def __init__(self, op) -> None:
super().__init__()
self.forward = self.forward1 if op == "mul" else self.forward2
def forward1(self, lhs, rhs):
lhs = torch.view_as_complex(lhs)
rhs = torch.view_as_complex(rhs)
res = torch.mul(lhs, rhs)
return torch.view_as_real(res)
def forward2(self, lhs, rhs):
lhs = torch.view_as_complex(lhs)
rhs = torch.view_as_complex(rhs)
res = lhs.mul_(rhs)
return torch.view_as_real(res + lhs)
ref_net = None
return aten_mul(op_type), ref_net, f"aten::{op_type}"
@pytest.mark.parametrize("lhs_type",
[torch.float32,
torch.float64])
@pytest.mark.parametrize("rhs_type",
[torch.float32,
torch.float64])
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.parametrize("op_type", ["mul", "mul_"])
def test_mul(self, ie_device, precision, ir_version, lhs_type, rhs_type, op_type):
self.lhs_type = lhs_type
self.rhs_type = rhs_type
self._test(*self.create_model(op_type), ie_device, precision, ir_version,
use_convert_model=True)