-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_norm.py
405 lines (321 loc) · 15.9 KB
/
test_norm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import platform
import numpy as np
import pytest
import torch
from packaging import version
from pytorch_layer_test_class import PytorchLayerTest
class TestNorm(PytorchLayerTest):
def _prepare_input(self):
return (np.random.randn(1, 2, 3).astype(np.float32),)
def create_model(self, p, dim, keepdim):
class aten_norm(torch.nn.Module):
def __init__(self, p, dim, keepdim) -> None:
super().__init__()
self.p = p
self.dim = dim
self.keepdim = keepdim
def forward(self, input_data):
return torch._VF.norm(input_data, self.p, self.dim, self.keepdim)
ref_net = None
return aten_norm(p, dim, keepdim), ref_net, "aten::norm"
def create_model_tensor_norm(self, p, dim, keepdim):
class aten_norm(torch.nn.Module):
def __init__(self, p, dim, keepdim) -> None:
super().__init__()
self.p = p
self.dim = dim
self.keepdim = keepdim
if self.keepdim is None or self.dim is None:
self.forward = self.forward2
else:
self.forward = self.forward4
def forward4(self, input_data):
return input_data.norm(self.p, self.dim, self.keepdim)
def forward2(self, input_data):
return input_data.norm(self.p)
ref_net = None
return aten_norm(p, dim, keepdim), ref_net, "aten::norm"
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.parametrize('p', [-2, -1, 0, 1, 2, 2.5, float('inf'), float('-inf')])
@pytest.mark.parametrize('dim', [[0], [0, 1], [0, 1, 2]])
@pytest.mark.parametrize('keepdim', [True, False])
def test_norm(self, ie_device, precision, ir_version, p, dim, keepdim):
self._test(*self.create_model(p, dim, keepdim),
ie_device, precision, ir_version)
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.parametrize('p', [-2, -1, 0, 1, 2, 2.5, float('inf'), float('-inf')])
@pytest.mark.parametrize('dim', [None, [0], [0, 1], [0, 1, 2]])
@pytest.mark.parametrize('keepdim', [None, True, False])
def test_norm_tensor(self, ie_device, precision, ir_version, p, dim, keepdim):
self._test(*self.create_model_tensor_norm(p, dim, keepdim),
ie_device, precision, ir_version)
class TestWeightNorm(PytorchLayerTest):
def _prepare_input(self):
return (np.random.randn(1, 60, 20).astype(np.float32),)
def create_model(self):
from torch import nn
from torch.nn.utils import weight_norm
return weight_norm(nn.Linear(20, 40), name='weight'), None, "aten::_weight_norm"
@pytest.mark.nightly
@pytest.mark.precommit
def test_weight_norm(self, ie_device, precision, ir_version):
self._test(*self.create_model(), ie_device, precision, ir_version, trace_model=True, freeze_model=False)
class TestFrobeniusNorm(PytorchLayerTest):
def _prepare_input(self, out=False, dtype="float32"):
x = np.random.randn(10, 12, 14).astype(dtype)
if not out:
return (x,)
y = np.zeros_like(x)
return (x, y)
def create_model(self, dim, keepdim, out):
class aten_frobenius_norm(torch.nn.Module):
def __init__(self, dim, keepdim, out) -> None:
super().__init__()
self.dim = dim
self.keepdim = keepdim
if out:
self.forward = self.forward_out
def forward(self, input_data):
return torch._VF.frobenius_norm(input_data, self.dim, self.keepdim)
def forward_out(self, input_data, out):
return torch._VF.frobenius_norm(input_data, self.dim, self.keepdim, out=out), out
ref_net = None
return aten_frobenius_norm(dim, keepdim, out), ref_net, "aten::frobenius_norm"
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.parametrize('dim', [(1, ), (0, ), (-1, ), (0, 1), (1, 0)])
@pytest.mark.parametrize('keepdim', [True, False])
@pytest.mark.parametrize("out", [False, True])
@pytest.mark.parametrize("dtype", ["float32", "float64"])
def test_frobenius_norm(self, ie_device, precision, ir_version, dim, keepdim, out, dtype):
self._test(*self.create_model(dim, keepdim, out), ie_device, precision, ir_version,
kwargs_to_prepare_input={"out": out, "dtype": dtype}
)
class TestLinalgVectorNorm(PytorchLayerTest):
def _prepare_input(self, out=False, out_dtype=None):
if not out:
return (np.random.randn(1, 2, 3).astype(np.float32),)
x = np.random.randn(1, 2, 3).astype(np.float32)
y = np.random.randn(1, 2, 3).astype(
out_dtype if out_dtype is not None else np.float32)
return (x, y)
def create_model(self, p, dim, keepdim, dtype_str, out, out_as_dtype):
dtypes = {
"float32": torch.float32,
"float64": torch.float64
}
dtype = dtypes.get(dtype_str)
class aten_linalg_vector_norm(torch.nn.Module):
def __init__(self, p, dim, keepdim, dtype, out, out_as_dtype) -> None:
super().__init__()
self.ord = p
self.dim = dim
self.keepdim = keepdim
self.dtype = dtype
if self.dtype is not None:
self.forward = self.forward_dtype
if out:
self.forward = self.forward_out
if out_as_dtype:
self.forward = self.forward_prim_dtype
def forward(self, x):
return torch.linalg.vector_norm(
x, ord=self.ord, dim=self.dim, keepdim=self.keepdim
)
def forward_dtype(self, x):
return torch.linalg.vector_norm(
x, ord=self.ord, dim=self.dim, keepdim=self.keepdim, dtype=self.dtype
)
def forward_prim_dtype(self, x, y):
return torch.linalg.vector_norm(
x, ord=self.ord, dim=self.dim, keepdim=self.keepdim, dtype=y.dtype
)
def forward_out(self, x, y):
return y, torch.linalg.vector_norm(
x, ord=self.ord, dim=self.dim, keepdim=self.keepdim, out=y
)
ref_net = None
return aten_linalg_vector_norm(p, dim, keepdim, dtype, out, out_as_dtype), ref_net, "aten::linalg_vector_norm"
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.parametrize('p', [-2, -1, 0, 1, 2, 2.5, float('inf'), float('-inf')])
@pytest.mark.parametrize('dim', [0, [0, 1], None])
@pytest.mark.parametrize('keepdim', [True, False])
@pytest.mark.parametrize("dtype", ["float32", "float64", None])
@pytest.mark.parametrize("out", [True, False])
@pytest.mark.parametrize("prim_dtype", [True, False])
def test_linalg_vector_norm(self, p, dim, keepdim, dtype, out, prim_dtype, ie_device, precision, ir_version):
self._test(*self.create_model(p, dim, keepdim, dtype, out, prim_dtype),
ie_device, precision, ir_version,
kwargs_to_prepare_input={"out": out or prim_dtype, "out_dtype": dtype if prim_dtype else None})
class TestLinalgMatrixNorm(PytorchLayerTest):
def _prepare_input(self, out=False, out_dtype=None):
if not out:
return (np.random.randn(3, 3).astype(np.float32),)
x = np.random.randn(1, 3, 3).astype(np.float32)
y = np.random.randn(1, 3, 3).astype(
out_dtype if out_dtype is not None else np.float32)
return (x, y)
def create_model(self, p, dim, keepdim, dtype_str, out, out_as_dtype):
dtypes = {
"float32": torch.float32,
"float64": torch.float64
}
dtype = dtypes.get(dtype_str)
class aten_linalg_matrix_norm(torch.nn.Module):
def __init__(self, p, dim, keepdim, dtype, out, out_as_dtype) -> None:
super().__init__()
self.ord = p
self.dim = dim
self.keepdim = keepdim
self.dtype = dtype
if self.dtype is not None:
self.forward = self.forward_dtype
if out:
self.forward = self.forward_out
if out_as_dtype:
self.forward = self.forward_prim_dtype
def forward(self, x):
return torch.linalg.matrix_norm(
x, ord=self.ord, dim=self.dim, keepdim=self.keepdim
)
def forward_dtype(self, x):
return torch.linalg.matrix_norm(
x, ord=self.ord, dim=self.dim, keepdim=self.keepdim, dtype=self.dtype
)
def forward_prim_dtype(self, x, y):
return torch.linalg.matrix_norm(
x, ord=self.ord, dim=self.dim, keepdim=self.keepdim, dtype=y.dtype
)
def forward_out(self, x, y):
return y, torch.linalg.matrix_norm(
x, ord=self.ord, dim=self.dim, keepdim=self.keepdim, out=y
)
ref_net = None
return aten_linalg_matrix_norm(p, dim, keepdim, dtype, out, out_as_dtype), ref_net, "aten::linalg_matrix_norm"
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.parametrize('p', [-1, 1, float('inf'), float('-inf'), "fro"])
@pytest.mark.parametrize('dim', [[0, 1], [-1, -2]])
@pytest.mark.parametrize('keepdim', [True, False])
@pytest.mark.parametrize("dtype", ["float32", "float64", None])
@pytest.mark.parametrize("out", [True, False])
@pytest.mark.parametrize("prim_dtype", [True, False])
@pytest.mark.xfail(condition=platform.system() in ('Darwin', 'Linux') and platform.machine() in ('arm', 'armv7l',
'aarch64',
'arm64', 'ARM64'),
reason='Ticket - 122715')
def test_linalg_matrix_norm(self, p, dim, keepdim, dtype, out, prim_dtype, ie_device, precision, ir_version):
self._test(*self.create_model(p, dim, keepdim, dtype, out, prim_dtype),
ie_device, precision, ir_version,
kwargs_to_prepare_input={"out": out or prim_dtype, "out_dtype": dtype if prim_dtype else None})
class TestLinalgNorm(PytorchLayerTest):
def _prepare_input(self, out=False, out_dtype=None, input_shape=(3, 3)):
if not out:
return (np.random.randn(*input_shape).astype(np.float32),)
x = np.random.randn(*input_shape).astype(np.float32)
y = np.random.randn(*input_shape).astype(
out_dtype if out_dtype is not None else np.float32)
return (x, y)
def create_model(self, p, dim, keepdim, dtype_str, out, out_as_dtype):
dtypes = {
"float32": torch.float32,
"float64": torch.float64
}
dtype = dtypes.get(dtype_str)
class aten_linalg_matrix_norm(torch.nn.Module):
def __init__(self, p, dim, keepdim, dtype, out, out_as_dtype) -> None:
super().__init__()
self.ord = p
self.dim = dim
self.keepdim = keepdim
self.dtype = dtype
if self.dtype is not None:
self.forward = self.forward_dtype
if out:
self.forward = self.forward_out
if out_as_dtype:
self.forward = self.forward_prim_dtype
def forward(self, x):
return torch.linalg.norm(
x, ord=self.ord, dim=self.dim, keepdim=self.keepdim
)
def forward_dtype(self, x):
return torch.linalg.norm(
x, ord=self.ord, dim=self.dim, keepdim=self.keepdim, dtype=self.dtype
)
def forward_prim_dtype(self, x, y):
return torch.linalg.norm(
x, ord=self.ord, dim=self.dim, keepdim=self.keepdim, dtype=y.dtype
)
def forward_out(self, x, y):
return y, torch.linalg.norm(
x, ord=self.ord, dim=self.dim, keepdim=self.keepdim, out=y
)
ref_net = None
return aten_linalg_matrix_norm(p, dim, keepdim, dtype, out, out_as_dtype), ref_net, "aten::linalg_norm"
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.parametrize('p,dim', [
(-1, [0, 1]), (1, [-1, -2]), (float('inf'), [1, 0]),
(float('-inf'), [-2, -1]), (0, 1), (1, -1),
(None, None), (2.5, 0), (-1, 1), (2, 0),
(float('inf'), 1), (float('-inf'), 1), ("fro", (0, 1))])
@pytest.mark.parametrize('keepdim', [True, False])
@pytest.mark.parametrize("dtype", ["float32", "float64", None])
@pytest.mark.parametrize("out", [True, False])
@pytest.mark.parametrize("prim_dtype", [True, False])
@pytest.mark.parametrize("input_shape", [[1, 3], [3, 3], [1, 3, 3]])
def test_linalg_norm(self, p, dim, keepdim, dtype, out, prim_dtype, input_shape, ie_device, precision, ir_version):
self._test(*self.create_model(p, dim, keepdim, dtype, out, prim_dtype),
ie_device, precision, ir_version,
kwargs_to_prepare_input={
"out": out or prim_dtype,
"out_dtype": dtype if prim_dtype else None,
"input_shape": input_shape
})
class TestTrickyNorm(PytorchLayerTest):
def _prepare_input(self, input_shape=(3, 3)):
return (np.random.randn(*input_shape).astype(np.float32),)
def create_model(self):
class aten_norm(torch.nn.Module):
def forward(self, x):
return torch.nn.functional.normalize(x, eps=2)
return aten_norm(), None, ["aten::linalg_vector_norm", "aten::clamp_min"]
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.parametrize("input_shape", [[15, 15, 17]])
def test_tricky_norm(self, input_shape, ie_device, precision, ir_version):
self._test(*self.create_model(), ie_device, precision, ir_version,
kwargs_to_prepare_input={"input_shape": input_shape}, use_convert_model=True, trace_model=True)
class TestRMSNorm(PytorchLayerTest):
def _prepare_input(self):
return (np.random.randn(2, 5, 10, 10).astype(np.float32),)
def create_model(self, normalized_shape, eps, gamma):
class aten_rms_norm(torch.nn.Module):
def __init__(self, normalized_shape, eps, gamma) -> None:
super().__init__()
self.rms = torch.nn.RMSNorm(normalized_shape,
eps=eps,
elementwise_affine=gamma)
def forward(self, input_data):
return self.rms(input_data)
return aten_rms_norm(normalized_shape, eps, gamma), None, "aten::rms_norm"
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_torch_export
@pytest.mark.skipif(version.parse(torch.__version__) < version.parse("2.4"),
reason="Not supported in PyTorch versions earlier than 2.4.")
@pytest.mark.parametrize("normalized_shape", [[10,],
[10, 10],
[5, 10, 10]])
@pytest.mark.parametrize('gamma', [True, False])
@pytest.mark.parametrize('eps', [None, 1e-5])
def test_rms_norm(self, ie_device, precision, ir_version,
normalized_shape, eps, gamma):
self._test(*self.create_model(normalized_shape, eps, gamma),
ie_device, precision, ir_version)