-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_reshape_as.py
40 lines (29 loc) · 1.45 KB
/
test_reshape_as.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import torch
from pytorch_layer_test_class import PytorchLayerTest
class TestReshapeAs(PytorchLayerTest):
def _prepare_input(self, shape1, shape2):
return (np.ones(shape1, dtype=np.float32), np.ones(shape2, dtype=np.float32))
def create_model(self, op):
class aten_reshape_as(torch.nn.Module):
def __init__(self, op) -> None:
super().__init__()
if op == "view_as":
self.forward = self.forward_view
def forward(self, input_tensor, shape_tensor):
return input_tensor.reshape_as(shape_tensor)
def forward_view(self, input_tensor, shape_tensor):
return input_tensor.view_as(shape_tensor)
ref_net = None
return aten_reshape_as(op), ref_net, f"aten::{op}"
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_torch_export
@pytest.mark.parametrize("op", ["reshape_as", "view_as"])
@pytest.mark.parametrize('input_tensor_shapes',( ((3, 6), (2, 9)), ((2, 2, 3), (6, 2)), ((6, 2), (2, 2, 3))))
def test_reshape_as(self, op, input_tensor_shapes, ie_device, precision, ir_version):
self._test(*self.create_model(op), ie_device, precision, ir_version,
kwargs_to_prepare_input={"shape1": input_tensor_shapes[0], "shape2": input_tensor_shapes[1]})