-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_resolve_conj_neg.py
56 lines (41 loc) · 1.84 KB
/
test_resolve_conj_neg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import pytest
from pytorch_layer_test_class import PytorchLayerTest
class TestResolveConjNeg(PytorchLayerTest):
def _prepare_input(self, dtype="float32"):
import numpy as np
return (np.random.randn(2, 4).astype(dtype),)
def _prepare_input_complex(self):
import numpy as np
return (np.array([[2+3j, 3-2j, 4-9j,10+1j], [1-3j, 3+2j, 4+9j,10-5j]]), )
def create_model(self, op_type):
import torch
ops = {
"resolve_conj": torch.resolve_conj,
"resolve_neg": torch.resolve_neg
}
op = ops[op_type]
class aten_resolve(torch.nn.Module):
def __init__(self, op):
super(aten_resolve, self).__init__()
self.op = op
def forward(self, x):
return self.op(x)
ref_net = None
return aten_resolve(op), ref_net, f"aten::{op_type}"
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_torch_export
@pytest.mark.parametrize("op_type", ["resolve_neg", "resolve_conj"])
@pytest.mark.parametrize("dtype", ["float32", "int32"])
def test_reslove(self, op_type, dtype, ie_device, precision, ir_version):
self._test(*self.create_model(op_type), ie_device, precision, ir_version, kwargs_to_prepare_input={"dtype": dtype})
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_torch_export
@pytest.mark.parametrize("op_type", ["resolve_neg", "resolve_conj"])
@pytest.mark.xfail(reason="complex dtype is not supported yet")
def test_resolve_complex(self, op_type, ie_device, precision, ir_version):
self._prepare_input = self._prepare_input_complex
self._test(*self.create_model(op_type), ie_device, precision, ir_version)