-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_roll.py
44 lines (34 loc) · 1.31 KB
/
test_roll.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
from pytorch_layer_test_class import PytorchLayerTest
class TestRoll(PytorchLayerTest):
def _prepare_input(self):
return (np.random.uniform(0, 50, (2, 3, 4)).astype(np.float32),)
def create_model(self, shifts, dim):
import torch
class aten_roll(torch.nn.Module):
def __init__(self, shifts, dim=None):
super(aten_roll, self).__init__()
self.dim = dim
self.shifts = shifts
def forward(self, x):
if self.dim is not None:
return torch.roll(x, self.shifts, self.dim)
return torch.roll(x, self.shifts)
ref_net = None
return aten_roll(shifts, dim), ref_net, "aten::roll"
@pytest.mark.parametrize(("shifts", "dim"), [
[(2, 1), (0, 1)],
[1, 0],
[-1, 0],
[1, None],
])
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_torch_export
@pytest.mark.precommit_fx_backend
def test_roll(self, shifts, dim, ie_device, precision, ir_version):
self._test(*self.create_model(shifts, dim), ie_device, precision, ir_version,
dynamic_shapes=ie_device != "GPU")