-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_rsub.py
113 lines (89 loc) · 3.81 KB
/
test_rsub.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import torch
from pytorch_layer_test_class import PytorchLayerTest
class TestRsub(PytorchLayerTest):
def _prepare_input(self):
return self.input_data
def create_model(self, second_type="float"):
class aten_rsub_float(torch.nn.Module):
def forward(self, x, y:float, alpha: float):
return torch.rsub(x, y, alpha=alpha)
class aten_rsub_int(torch.nn.Module):
def forward(self, x, y:int, alpha: float):
return torch.rsub(x, y, alpha=alpha)
model_cls = {
"float": aten_rsub_float,
"int": aten_rsub_int
}
model = model_cls[second_type]
ref_net = None
return model(), ref_net, "aten::rsub"
@pytest.mark.parametrize('input_data',
[
[[2, 3, 4], np.array(5).astype(np.float32), [1]]
])
@pytest.mark.nightly
@pytest.mark.precommit
def test_rsub1(self, ie_device, precision, ir_version, input_data):
self.input_data = []
for input in input_data:
if type(input) is list:
self.input_data.append(np.random.randn(*input).astype(np.float32))
else:
self.input_data.append(input)
self._test(*self.create_model(second_type="float"), ie_device, precision, ir_version, use_convert_model=True)
@pytest.mark.parametrize('input_data',
[
[[2, 3, 4], np.array(5).astype(int), [1]]
])
@pytest.mark.nightly
@pytest.mark.precommit
def test_rsub2(self, ie_device, precision, ir_version, input_data):
self.input_data = []
for input in input_data:
if type(input) is list:
self.input_data.append(np.random.randn(*input).astype(np.float32))
else:
self.input_data.append(input)
self._test(*self.create_model(second_type="int"), ie_device, precision, ir_version, use_convert_model=True)
class TestRsubTypes(PytorchLayerTest):
def _prepare_input(self):
return (torch.randn(self.lhs_shape).to(self.lhs_type).numpy(),
np.array([1]).astype(self.rhs_type))
def create_model(self, lhs_type, rhs_type):
class aten_rsub(torch.nn.Module):
def __init__(self, lhs_type, rhs_type):
super().__init__()
self.lhs_type = lhs_type
if rhs_type == np.int32:
self.forward = self.forward2
else:
self.forward = self.forward1
def forward1(self, lhs, rhs:float):
return torch.rsub(lhs.to(self.lhs_type), rhs, alpha=2)
def forward2(self, lhs, rhs:int):
return torch.rsub(lhs.to(self.lhs_type), rhs, alpha=2)
ref_net = None
return aten_rsub(lhs_type, rhs_type), ref_net, "aten::rsub"
@pytest.mark.parametrize(("lhs_type", "rhs_type"),
[[torch.int32, np.int32],
[torch.int32, np.float32],
[torch.int64, np.int32],
[torch.int64, np.float32],
[torch.float32, np.int32],
[torch.float32, np.float32],
])
@pytest.mark.parametrize(("lhs_shape"), [[2, 3], [3], [2, 3, 4]])
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_torch_export
@pytest.mark.precommit_fx_backend
def test_rsub_types(self, ie_device, precision, ir_version, lhs_type, lhs_shape, rhs_type):
self.lhs_type = lhs_type
self.lhs_shape = lhs_shape
self.rhs_type = rhs_type
self._test(*self.create_model(lhs_type, rhs_type),
ie_device, precision, ir_version)