-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_scatter.py
288 lines (257 loc) · 11.4 KB
/
test_scatter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import torch
from pytorch_layer_test_class import PytorchLayerTest, skip_if_export
class TestScatter(PytorchLayerTest):
def _prepare_input(self, dtype, out=False):
inp = np.random.randn(6, 6).astype(dtype)
if not out:
return (inp,)
return (inp, np.zeros_like(inp, dtype=dtype))
def create_model(self, dim, index, src, inplace, reduce, has_out):
class aten_scatter(torch.nn.Module):
def __init__(self, dim, index, src, inplace, reduce, has_out=False):
super(aten_scatter, self).__init__()
self.dim = dim
self.use_empty_index = False
if index is None:
self.use_empty_index = True
# Placeholder
self.index = torch.empty([1])
else:
self.index = index
self.src = src
str_forward = "_forward"
if inplace:
str_forward += "_inplace"
else:
str_forward += ("_out_of_place" if not has_out else "_with_out")
if reduce:
self.reduce = reduce
str_forward += "_reduce"
self.forward = getattr(self, str_forward)
def _forward_out_of_place(self, x: torch.Tensor):
if self.use_empty_index:
index = torch.empty([0, 0])
else:
index = self.index
return torch.scatter(x, self.dim, index, self.src)
def _forward_with_out(self, x: torch.Tensor, out: torch.Tensor):
if self.use_empty_index:
index = torch.empty([0, 0])
else:
index = self.index
return torch.scatter(x, self.dim, index, self.src, out=out)
def _forward_inplace(self, x: torch.Tensor):
if self.use_empty_index:
index = torch.empty([0, 0])
else:
index = self.index
return x.scatter_(self.dim, index, self.src)
def _forward_out_of_place_reduce(self, x: torch.Tensor):
if self.use_empty_index:
index = torch.empty([0, 0])
else:
index = self.index
return torch.scatter(x, self.dim, index, self.src, reduce=self.reduce)
def _forward_with_out_reduce(self, x: torch.Tensor, out:torch.Tensor):
if self.use_empty_index:
index = torch.empty([0, 0])
else:
index = self.index
return torch.scatter(x, self.dim, index, self.src, reduce=self.reduce, out=out)
def _forward_inplace_reduce(self, x: torch.Tensor):
if self.use_empty_index:
index = torch.empty([0, 0])
else:
index = self.index
return x.scatter_(self.dim, index, self.src, reduce=self.reduce)
ref_net = None
if inplace:
op_name = "aten::scatter_"
else:
op_name = "aten::scatter"
return aten_scatter(dim, index, src, inplace, reduce, has_out), ref_net, op_name
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_fx_backend
@pytest.mark.parametrize("dim", [1, -1, 0])
@pytest.mark.parametrize(
"index",
[
None, # Empty tensor scenario.
torch.tensor([[0, 1, 2, 3]]),
torch.tensor([[0, 5], [4, 1], [2, 3]]),
],
)
@pytest.mark.parametrize("src", [torch.arange(1, 26).reshape(5, 5), 1])
@pytest.mark.parametrize("dtype", ["int32", "int64", "float32", "float64"])
@pytest.mark.parametrize(["inplace", "has_out"], [(True, False), (False, True), (False, False)])
@pytest.mark.parametrize("reduce", [None, "add", "multiply"])
def test_scatter(self, dim, index, src, dtype, inplace, has_out, reduce, ie_device, precision, ir_version):
if isinstance(src, torch.Tensor):
src = src.to(getattr(torch, dtype))
freeze = True
if index is None:
# Freeze creates empty constant tensor which isn't supported by OV.
freeze = False
if (not freeze) and reduce:
pytest.skip(
"Cannot test reduce parameters with empty indexes due to issues with empty constant tensor or issues with prim::GetAttr str inputs."
)
self._test(
*self.create_model(dim, index, src, inplace, reduce, has_out),
ie_device,
precision,
ir_version,
kwargs_to_prepare_input={"dtype": dtype, "out": has_out},
freeze_model=freeze,
)
class TestScatterReduce(PytorchLayerTest):
def _prepare_input(self, dtype, out=False):
inp = np.random.randn(6, 6).astype(dtype)
if not out:
return (inp,)
return (inp, np.zeros_like(inp, dtype=dtype))
def create_model(self, dim, index, src, inplace, reduce, include_self, has_out):
class aten_scatter_reduce(torch.nn.Module):
def __init__(self, dim, index, src, inplace, reduce, include_self, has_out=False):
super(aten_scatter_reduce, self).__init__()
self.dim = dim
self.use_empty_index = False
if index is None:
self.use_empty_index = True
# Placeholder
self.index = torch.empty([1])
else:
self.index = index
self.src = src
str_forward = "_forward"
if inplace:
str_forward += "_inplace"
else:
str_forward += ("_out_of_place" if not has_out else "_with_out")
self.reduce = reduce
self.include_self = include_self
self.forward = getattr(self, str_forward)
def _forward_out_of_place(self, x: torch.Tensor):
if self.use_empty_index:
index = torch.empty([0, 0])
else:
index = self.index
return torch.scatter_reduce(x, self.dim, index, self.src, self.reduce, include_self=self.include_self)
def _forward_with_out(self, x: torch.Tensor, out: torch.Tensor):
if self.use_empty_index:
index = torch.empty([0, 0])
else:
index = self.index
return torch.scatter_reduce(x, self.dim, index, self.src, self.reduce, include_self=self.include_self, out=out)
def _forward_inplace(self, x: torch.Tensor):
if self.use_empty_index:
index = torch.empty([0, 0])
else:
index = self.index
return x.scatter_reduce_(self.dim, index, self.src, self.reduce, include_self=self.include_self)
ref_net = None
if inplace:
op_name = "aten::scatter_reduce_"
else:
op_name = "aten::scatter_reduce"
return aten_scatter_reduce(dim, index, src, inplace, reduce, include_self, has_out), ref_net, op_name
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.parametrize("dim", [1, -1, 0])
@pytest.mark.parametrize(
"index",
[
None, # Empty tensor scenario.
torch.tensor([[0, 1, 2, 3]]),
torch.tensor([[0, 5], [4, 1], [2, 3]]),
],
)
@pytest.mark.parametrize("src", [torch.arange(1, 26).reshape(5, 5)])
@pytest.mark.parametrize("dtype", ["int32", "int64", "float32", "float64"])
@pytest.mark.parametrize(["inplace", "has_out"], [(True, False), (False, True), (False, False)])
@pytest.mark.parametrize("reduce", ["sum", "prod", "mean", "amax", "amin"])
@pytest.mark.parametrize("include_self", [True, False])
def test_scatter_reduce(self, dim, index, src, dtype, inplace, has_out, reduce, include_self, ie_device, precision, ir_version):
if isinstance(src, torch.Tensor):
src = src.to(getattr(torch, dtype))
freeze = True
if index is None:
# Freeze creates empty constant tensor which isn't supported by OV.
freeze = False
if (not freeze) and reduce:
pytest.skip(
"Cannot test reduce parameters with empty indexes due to issues with empty constant tensor or issues with prim::GetAttr str inputs."
)
kwargs = dict(kwargs_to_prepare_input={"dtype": dtype, "out": has_out}, freeze_model=freeze)
if reduce == "mean" and dtype in ["int32", "int64"]:
# rounding can be different on torch vs ov
kwargs["custom_eps"] = 1.
self._test(
*self.create_model(dim, index, src, inplace, reduce, include_self, has_out),
ie_device,
precision,
ir_version,
**kwargs
)
class TestScatterAdd(PytorchLayerTest):
def _prepare_input(self, dtype):
return (np.random.randn(6, 6).astype(dtype),)
def create_model(self, dim, index, src, inplace):
class aten_scatter_reduce(torch.nn.Module):
def __init__(self, dim, index, src, inplace):
super(aten_scatter_reduce, self).__init__()
self.dim = dim
self.use_empty_index = False
if index is None:
self.use_empty_index = True
# Placeholder
self.index = torch.empty([1])
else:
self.index = index
self.src = src
self.inplace = inplace
def forward(self, x: torch.Tensor):
if self.use_empty_index:
index = torch.empty([0, 0])
else:
index = self.index
if self.inplace:
return x.scatter_add_(self.dim, index, self.src)
else:
return x.scatter_add(self.dim, index, self.src)
op_name = "aten::scatter_add_" if inplace else "aten::scatter_add"
return aten_scatter_reduce(dim, index, src, inplace), None, op_name
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_torch_export
@pytest.mark.parametrize("dim", [1, -1, 0])
@pytest.mark.parametrize(
"index",
[
None, # Empty tensor scenario.
torch.tensor([[0, 1, 2, 3]]),
torch.tensor([[0, 5], [4, 1], [2, 3]]),
],
)
@pytest.mark.parametrize("src", [torch.arange(1, 26).reshape(5, 5)])
@pytest.mark.parametrize("dtype", ["int32", "int64", "float32", "float64"])
@pytest.mark.parametrize("inplace", [skip_if_export(True), False])
def test_scatter_add(self, dim, index, src, dtype, inplace, ie_device, precision, ir_version):
if isinstance(src, torch.Tensor):
src = src.to(getattr(torch, dtype))
if index is None:
pytest.skip(
"Cannot test reduce parameters with empty indexes due to issues with empty constant tensor or issues with prim::GetAttr str inputs."
)
self._test(
*self.create_model(dim, index, src, inplace),
ie_device,
precision,
ir_version,
kwargs_to_prepare_input={"dtype": dtype},
)