-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_slice.py
97 lines (77 loc) · 2.88 KB
/
test_slice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
import torch
from pytorch_layer_test_class import PytorchLayerTest
class TestSlice1D(PytorchLayerTest):
def _prepare_input(self):
return (np.array(range(16), np.float32), np.array(self.params, dtype=np.int32))
def create_model(self):
class aten_slice(torch.nn.Module):
def forward(self, x, params):
return x[params[0] : params[1] : params[2]]
ref_net = None
return aten_slice(), ref_net, "aten::slice"
@pytest.mark.parametrize(
"params",
[[0, -1, 1], [0, -1, 3], [0, 5, 3], [2, 7, 3], [-7, -15, 2], [-1, -7, 2], [5, 2, 1]],
)
@pytest.mark.nightly
@pytest.mark.precommit
def test_slice1d(self, ie_device, precision, ir_version, params):
self.params = params
self._test(
*self.create_model(),
ie_device,
precision,
ir_version,
)
class TestSlice2D(PytorchLayerTest):
def _prepare_input(self):
return (
np.array([range(16), range(16, 32)], np.float32),
np.array(self.params_0a, dtype=np.int32),
np.array(self.params_1a, dtype=np.int32),
)
def create_model(self):
class aten_slice(torch.nn.Module):
def forward(self, x, params_0a, params_1a):
return x[params_0a[0] : params_0a[1] : params_0a[2], params_1a[0] : params_1a[1] : params_1a[2]]
ref_net = None
return aten_slice(), ref_net, "aten::slice"
@pytest.mark.parametrize(
"params_0a",
[[0, -1, 1], [0, -1, 3], [0, 5, 3], [2, 7, 3], [-7, -15, 2], [-1, -7, 2], [5, 2, 1]],
)
@pytest.mark.parametrize(
"params_1a",
[[0, -1, 1], [0, -1, 3], [0, 5, 3], [2, 7, 3], [-7, -15, 2], [-1, -7, 2], [5, 2, 1]],
)
@pytest.mark.nightly
@pytest.mark.precommit
def test_slice2d(self, ie_device, precision, ir_version, params_0a, params_1a):
self.params_0a = params_0a
self.params_1a = params_1a
self._test(
*self.create_model(),
ie_device,
precision,
ir_version,
)
class TestSliceAndSqueeze(PytorchLayerTest):
def _prepare_input(self):
return (np.random.randn(1, 1, 32).astype(np.float32),)
def create_model(self):
class aten_slice(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, x):
a = torch.squeeze(x, 1)
return a[:, None, :]
ref_net = None
return aten_slice(), ref_net, "aten::slice"
@pytest.mark.nightly
@pytest.mark.precommit
def test_slice_and_squeeze(self, ie_device, precision, ir_version):
self._test(*self.create_model(), ie_device, precision, ir_version, dynamic_shapes=False)