-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_slice_scatter.py
41 lines (29 loc) · 1.4 KB
/
test_slice_scatter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import pytest
from pytorch_layer_test_class import PytorchLayerTest
class TestSliceScatter(PytorchLayerTest):
def _prepare_input(self):
import numpy as np
return (np.random.randn(2, 5, 3, 4).astype(np.float32),)
def create_model(self, src, dim, start, end, step):
import torch
class aten_slice_scatter(torch.nn.Module):
def __init__(self, src=None, dim=None, start=None, end=None, step=None):
super(aten_slice_scatter, self).__init__()
self.src = src
self.dim = dim
self.start = start
self.end = end
self.step = step
def forward(self, x):
return torch.slice_scatter(x, src=self.src, dim=self.dim, start=self.start, end=self.end, step=self.step);
ref_net = None
return aten_slice_scatter(src, dim, start, end, step), ref_net, "aten::slice_scatter"
import torch
@pytest.mark.precommit_fx_backend
@pytest.mark.parametrize(("src", "dim", "start", "end", "step"),
[(torch.ones(2), 1, 1, 2, 1),])
def aten_slice_scatter(self, src, dim, start, end, step, ie_device, precision, ir_version):
self._test(*self.create_model(src, dim, start, end, step),
ie_device, precision, ir_version)