-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_topk.py
68 lines (56 loc) · 1.95 KB
/
test_topk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import os
import numpy as np
import pytest
from pytorch_layer_test_class import PytorchLayerTest
class TestTopK(PytorchLayerTest):
def _prepare_input(self):
return (self.input_tensor,)
def create_model(self, k, dim, largest, sort):
import torch
class aten_topk(torch.nn.Module):
def __init__(self, k, dim, largest, sort):
super(aten_topk, self).__init__()
self.k = k
self.dim = dim
self.largest = largest
self.sort = sort
def forward(self, input_tensor):
if self.dim is None:
return torch.topk(input_tensor, k=self.k, largest=self.largest, sorted=self.sort)
else:
return torch.topk(input_tensor, k=self.k, dim=self.dim, largest=self.largest, sorted=self.sort)
ref_net = None
return aten_topk(k, dim, largest, sort), ref_net, "aten::topk"
@pytest.mark.parametrize(("input_shape"), [
[7, 5, 5, 4],
[5, 6, 6, 7, 8]
])
@pytest.mark.parametrize(("k"), [
3,
1,
2,
])
@pytest.mark.parametrize(("dim"), [
0,
2,
-1,
None,
])
@pytest.mark.parametrize(("largest"), [
True,
False,
])
# For False it is hard to test because in Pytorch implementation
# there is not promise on the order of output values
@pytest.mark.parametrize(("sort"), [
True,
])
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_torch_export
@pytest.mark.precommit_fx_backend
def test_topK(self, input_shape, k, dim, largest, sort, ie_device, precision, ir_version):
self.input_tensor = np.random.randn(*input_shape).astype(np.float32)
self._test(*self.create_model(k, dim, largest, sort), ie_device, precision, ir_version)