-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_unflatten.py
71 lines (53 loc) · 2.42 KB
/
test_unflatten.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import pytest
from pytorch_layer_test_class import PytorchLayerTest
class TestUnflatten(PytorchLayerTest):
def _prepare_input(self, dtype):
return (np.random.uniform(0, 50, (6, 3, 4)).astype(dtype),)
def create_model(self, dim, shape):
import torch
class aten_unflatten(torch.nn.Module):
def __init__(self, dim, shape):
super(aten_unflatten, self).__init__()
self.dim = dim
self.shape = shape
def forward(self, x):
return x.unflatten(self.dim, self.shape)
ref_net = None
return aten_unflatten(dim, shape), ref_net, "aten::unflatten"
@pytest.mark.parametrize(("dim", "shape"), [(0, [2, 1, 3]), (1, [1, 3]), (2, (2, -1)), (-1, (2, 2)), (-2, (-1, 1))])
@pytest.mark.parametrize("dtype", ["float32", "int32"])
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_torch_export
def test_unflatten(self, dim, shape, dtype, ie_device, precision, ir_version):
self._test(*self.create_model(dim, shape), ie_device, precision, ir_version, kwargs_to_prepare_input={"dtype": dtype})
class TestUnflattenListSizes(PytorchLayerTest):
def _prepare_input(self, dtype):
return (np.random.uniform(0, 50, (6, 2, 4)).astype(dtype),)
def create_model(self, dim):
import torch
class aten_unflatten(torch.nn.Module):
def __init__(self, dim):
super(aten_unflatten, self).__init__()
self.dim = dim
def forward(self, x):
dim1, dim2, dim3 = x.shape
if self.dim == 0:
sizes = [dim1, -1]
elif self.dim == 1:
sizes = [dim2 // 2, -1]
else:
sizes = [2, dim3 // 2, -1]
return x.unflatten(self.dim, sizes)
ref_net = None
return aten_unflatten(dim), ref_net, "aten::unflatten"
@pytest.mark.parametrize("dim", [0, 1, 2])
@pytest.mark.parametrize("dtype", ["float32", "int32"])
@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.precommit_torch_export
def test_unflatten(self, dim, dtype, ie_device, precision, ir_version):
self._test(*self.create_model(dim), ie_device, precision, ir_version, kwargs_to_prepare_input={"dtype": dtype})