-
Notifications
You must be signed in to change notification settings - Fork 2.5k
/
Copy pathtest_unique.py
83 lines (67 loc) · 3.32 KB
/
test_unique.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import pytest
import numpy as np
from packaging.version import parse as parse_version
import torch
import sys
from pytorch_layer_test_class import PytorchLayerTest
class TestUnique2(PytorchLayerTest):
def _prepare_input(self):
return (self.input_tensor, )
def create_model(self, sorted, return_inverse, return_counts):
import torch
class aten_unique2_return_first(torch.nn.Module):
def __init__(self, sorted):
super(aten_unique2_return_first, self).__init__()
self.op = torch._unique2
self.sorted = sorted
def forward(self, x):
result, inverse, _ = self.op(x, self.sorted, True, False)
return result, inverse
class aten_unique2_return_second(torch.nn.Module):
def __init__(self, sorted):
super(aten_unique2_return_second, self).__init__()
self.op = torch._unique2
self.sorted = sorted
def forward(self, x):
result, _, counts = self.op(x, self.sorted, False, True)
return result, counts
class aten_unique2_return_both(torch.nn.Module):
def __init__(self, sorted):
super(aten_unique2_return_both, self).__init__()
self.op = torch._unique2
self.sorted = sorted
def forward(self, x):
result, inverse, counts = self.op(x, self.sorted, True, True)
return result, inverse, counts
class aten_unique2_return_neither(torch.nn.Module):
def __init__(self, sorted):
super(aten_unique2_return_neither, self).__init__()
self.op = torch._unique2
self.sorted = sorted
def forward(self, x):
result, _, _ = self.op(x, self.sorted, False, False)
return result
if return_inverse and return_counts:
model_class, op = (aten_unique2_return_both, "aten::_unique2")
elif return_inverse:
model_class, op = (aten_unique2_return_first, "aten::_unique2")
elif return_counts:
model_class, op = (aten_unique2_return_second, "aten::_unique2")
else:
model_class, op = (aten_unique2_return_neither, "aten::_unique2")
return model_class(sorted), None, op
@pytest.mark.parametrize("input_shape", [
[115], [24, 30], [5, 4, 6], [3, 7, 1, 4], [16, 3, 32, 32]
])
@pytest.mark.parametrize("sorted", [False, True])
@pytest.mark.parametrize("return_inverse", [False, True])
@pytest.mark.parametrize("return_counts", [False, True])
@pytest.mark.nightly
@pytest.mark.precommit
def test_unique2(self, input_shape, sorted, return_inverse, return_counts, ie_device, precision, ir_version):
if sys.platform == "win32" and input_shape == [16, 3, 32, 32] and parse_version(torch.__version__).release == (2, 4, 0):
pytest.skip(reason="torch==2.4.0 fails on windows, but is fixed in nightly.")
self.input_tensor = np.random.randint(0, 10, size=input_shape).astype(np.int32)
self._test(*self.create_model(sorted, return_inverse, return_counts), ie_device, precision, ir_version)