-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathcheck_SIFTDB.py
302 lines (260 loc) · 10.6 KB
/
check_SIFTDB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import os
import sys
import re
import getopt
global REF_BASE_IDX
REF_BASE_IDX = 1
global NEW_BASE_IDX
NEW_BASE_IDX = 2
global REF_AA_IDX
REF_AA_IDX = 7
global NEW_AA_IDX
NEW_AA_IDX =8
global SIFT_SCORE_IDX
SIFT_SCORE_IDX = 10
global SIFT_CONF_IDX
SIFT_CONF_IDX = 11
global DBSNP_IDX
DBSNP_IDX = 13
class SIFTPredMetric (object):
num_damaging = 0
num_tolerated = 0
num_not_predicted = 0
total = 0
def __init__ (self):
self.num_damaging = 0
self.num_tolerated = 0
self.num_not_predicted = 0
self.total = 0
def __repr__ (self):
predicted_on = self.num_damaging + self.num_tolerated
if predicted_on > 0:
# print str (self.num_damaging) + " " + str (self.num_tolerated)
return "%.1f" % (float(self.num_damaging) / float (predicted_on) * 100.0)
else:
return "-1"
def __str__ (self):
predicted_on = self.num_damaging + self.num_tolerated
# print str (self.num_damaging) + " " + str (self.num_tolerated)
if predicted_on > 0:
# print str (self.num_damaging) + " " + str (self.num_tolerated)
return "%.1f" % ( float (self.num_damaging) / float (predicted_on) * 100.0)
else:
return "-1"
def percent_predicted_on (self):
if self.total > 0:
return ((float (self.num_damaging) + float (self.num_tolerated)) *100)/ float (self.total)
else:
return -1
def counts (self):
predicted_on = self.num_damaging + self.num_tolerated
return str (self.num_damaging) + "/" + str (predicted_on)
def inc_dam (self):
self.num_damaging += 1
# print "dam value now " + str (self.num_damaging)
def inc_tol (self):
self.num_tolerated += 1
# print "tol now " + str (self.num_tolerated)
def inc_not_pred (self):
self.num_not_predicted += 1
def inc_total (self):
self.total += 1
def inc_another_metric (self, m):
self.num_damaging += m.num_damaging
self.num_tolerated += m.num_tolerated
self.num_not_predicted += m.num_not_predicted
self.total += m.total
def output_results (outfile, DNA_base_change_syn_nonsyn_counts, DNA_base_change_aa_pred, all_nonsyn_changes, dbSNP_predictions, novel_predictions, ref_predictions, aa_change_pred):
outfp = open (outfile, "w")
outfp.write (outfile + "\n")
for key, value in DNA_base_change_syn_nonsyn_counts.items():
outfp.write (key + "\t" + str (value) + "\n")
outfp.write ("\n")
if DNA_base_change_syn_nonsyn_counts["SYN"] == 0 and DNA_base_change_syn_nonsyn_counts["NONSYN"] == 0:
outfp.write ("no synonymous or nonsynonymous changes, empty file?")
outfp.close()
return
ns_syn_ratio = float (DNA_base_change_syn_nonsyn_counts["NONSYN"])/float (DNA_base_change_syn_nonsyn_counts["SYN"])
outfp.write ("nonsyn/syn ratio: %.2f\n\n" % ns_syn_ratio)
outfp.write ("All Counts: ")
outfp.write (str (all_nonsyn_changes) + " " + all_nonsyn_changes.counts() + "\n")
#print str (all_nonsyn_changes)
outfp.write ("dbSNP damaging: " )
outfp.write (str (dbSNP_predictions) + "% " + dbSNP_predictions.counts() + "\n")
outfp.write ("Not in dbSNP damaging: ")
outfp.write (str (novel_predictions) + "% " + novel_predictions.counts() + "\n")
outfp.write ("\n")
outfp.write ("Reference predictions % damaging: ")
outfp.write (str (ref_predictions) + " " + ref_predictions.counts() + "\n")
outfp.write ("% predicted on: " + str (ref_predictions.percent_predicted_on()) )
outfp.write ("\n")
output_matrix_of_SIFTPredMetrics (DNA_bases, DNA_base_change_aa_pred, outfp)
#output_matrix_of_SIFTPredMetrics (amino_acids, aa_change_pred, outfp)
outfp.write ("#####################################\n")
outfp.close()
def get_SIFT_prediction ( sift_score, sift_confidence):
# print "sift score " + str (sift_score) + "confidence" + sift_confidence
if not sift_score or not sift_confidence or sift_score == "NA" or sift_confidence == "NA":
return ""
if float (sift_score) < 0.05 and float (sift_confidence) < 3.5:
return "DAMAGING"
elif float (sift_score) >= 0.05:
return "TOLERATED"
else:
return "NONE"
def tabulate_dbSNP_changes (fields, dbSNP_predictions, novel_predictions, ref_predictions):
ref_aa = fields[REF_AA_IDX]
new_aa = fields[NEW_AA_IDX]
ref_base = fields[REF_BASE_IDX]
new_base = fields[NEW_BASE_IDX]
# not scoring stops or U's
if ref_aa == "*" or new_aa == "*" or ref_aa == "U" or new_aa == "U" or ref_aa == "" or new_aa == "" or ref_aa == "NA" or new_aa == "NA":
return
# scoring synonymous
if ref_aa == new_aa:
if ref_base == new_base: # don't want to count codon changes to same amino acid, as then there is ovecounting and a position represented more than once
var_to_update = ref_predictions
else:
return
elif fields[DBSNP_IDX].startswith ("rs"): # nonsynonymous
var_to_update = dbSNP_predictions
print ("updating with " + fields[DBSNP_IDX])
print (' '.join (fields))
elif fields[DBSNP_IDX].startswith ("novel"): #nonsynynmous
var_to_update = novel_predictions
elif fields[DBSNP_IDX] != "ref":
var_to_update = dbSNP_predictions
print ("updating nonstandard " + fields[DBSNP_IDX])
else:
print ("dbsnp field " + fields[DBSNP_IDX] + "\n")
return # this is so ref changes aren't counted
var_to_update.inc_total()
pred = get_SIFT_prediction (fields[SIFT_SCORE_IDX], fields[SIFT_CONF_IDX])
if pred == "DAMAGING":
var_to_update.inc_dam ()
elif pred == "TOLERATED":
var_to_update.inc_tol()
elif pred == "NONE":
var_to_update.inc_not_pred()
def tabulate_aa_changes (fields, aa_change_pred):
# print "in tabulate_aa_changes"
# print fields
ref_aa = fields[REF_AA_IDX]
new_aa = fields[NEW_AA_IDX]
# print "amino acid change " + ref_aa + "->" + new_aa
if ref_aa == "*" or new_aa == "*" or ref_aa == "U" or new_aa == "U" or ref_aa == "" or new_aa == "" or ref_aa == "NA" or new_aa == "NA":
return
aa_change_pred[ref_aa][new_aa].inc_total()
pred = get_SIFT_prediction (fields[SIFT_SCORE_IDX], fields[SIFT_CONF_IDX])
if pred == "DAMAGING":
aa_change_pred[ref_aa][new_aa].inc_dam ()
elif pred == "TOLERATED":
aa_change_pred[ref_aa][new_aa].inc_tol()
elif pred == "NONE":
aa_change_pred[ref_aa][new_aa].inc_not_pred()
def output_matrix_of_SIFTPredMetrics (indices, matrix, out_fp):
# print header
out_fp. write ("\t")
for index in indices:
out_fp.write ( index + "\t")
out_fp.write ( "\n")
# now print values
for index1 in indices:
out_fp.write (index1 + "\t")
for index2 in indices:
pred = matrix[index1][index2]
out_fp.write (str (pred) + "\t")
out_fp.write ( "\n")
out_fp.write ("\n")
def process_chr_file (siftdb_infile, DNA_base_change_syn_nonsyn_counts, DNA_base_change_aa_pred, all_nonsyn_changes, dbSNP_predictions, novel_predictions, ref_predictions, aa_change_pred):
siftdb_fp = open (siftdb_infile, "r")
already_processed = set()
for line in siftdb_fp.readlines():
fields = line.split ('\t')
variant_key = ':'.join (fields[0:3])
# print variant_key + "\n"
if variant_key not in already_processed and len(fields) == 14 and fields[NEW_AA_IDX] != "" and fields[REF_AA_IDX] != "" and not line.startswith("#"):
# print "processing " + variant_key
# print line
tabulate_DNA_changes (fields, DNA_base_change_syn_nonsyn_counts, DNA_base_change_aa_pred, all_nonsyn_changes)
tabulate_dbSNP_changes (fields, dbSNP_predictions, novel_predictions, ref_predictions)
tabulate_aa_changes (fields, aa_change_pred)
already_processed.add (str(variant_key))
# print already_processed
siftdb_fp.close()
def read_metadoc (metadocfile):
metahash = {}
fo = open (metadocfile, "r")
lines = fo.readlines()
for line in lines:
line = line.strip()
# print "in here " + line
if "=" in line and not line.startswith ("#"):
# print "in here2 " + line
var, val = line.split ("=")
var = var.strip()
val = val.strip()
metahash[var] = val
fo.close()
return metahash
def tabulate_DNA_changes (fields, DNA_base_change_syn_nonsyn_counts, DNA_base_change_aa_pred, all_nonsyn_changes):
ref_allele = fields[REF_BASE_IDX]
new_allele = fields[NEW_BASE_IDX]
ref_aa = fields[REF_AA_IDX]
new_aa = fields[NEW_AA_IDX]
if ref_aa != "" and new_aa != "" and ref_allele != new_allele: # don't care about reference bases
if ref_aa == new_aa:
DNA_base_change_syn_nonsyn_counts["SYN"] += 1
elif ref_aa != new_aa and new_aa == "*":
DNA_base_change_syn_nonsyn_counts["STOP-GAINED"] += 1
elif ref_aa != new_aa:
DNA_base_change_syn_nonsyn_counts["NONSYN"] += 1
all_nonsyn_changes.inc_total ()
DNA_base_change_aa_pred[ref_allele][new_allele].inc_total()
pred = get_SIFT_prediction (fields[SIFT_SCORE_IDX], fields[SIFT_CONF_IDX])
if pred == "DAMAGING":
all_nonsyn_changes.inc_dam ()
DNA_base_change_aa_pred[ref_allele][new_allele].inc_dam()
elif pred == "TOLERATED" :
all_nonsyn_changes.inc_tol()
DNA_base_change_aa_pred[ref_allele][new_allele].inc_tol()
elif pred == "NONE":
all_nonsyn_changes.inc_not_pred()
DNA_base_change_aa_pred[ref_allele][new_allele].inc_not_pred()
else:
print ("ERROR this case is not handled " + ' '.join (fields))
def initialize_metrics (DNA_base_change_syn_nonsyn_counts, DNA_base_change_aa_pred, all_nonsyn_changes, dbSNP_predictions, novel_predictions, ref_predictions, aa_change_pred):
DNA_base_change_syn_nonsyn_counts["SYN"] = 0
DNA_base_change_syn_nonsyn_counts["STOP-GAINED"] = 0
DNA_base_change_syn_nonsyn_counts["NONSYN"] = 0
# main
#initailize everything
DNA_bases = ["A", "C", "G", "T"]
amino_acids = "A C D E F G H I K L M N P Q R S T V W Y".split (" ")
#print "amino aicds " + str (len (amino_acids))
DNA_base_change_aa_pred = {} # 2x2 dictionary of A>T damaging, total, etc
for base1 in DNA_bases:
DNA_base_change_aa_pred[base1] ={}
for base2 in DNA_bases:
DNA_base_change_aa_pred[base1][base2] = SIFTPredMetric ()
aa_change_pred = {} # 20x20 matrix for deleterious/tolerated
for aa1 in amino_acids:
aa_change_pred[aa1] = {}
for aa2 in amino_acids:
aa_change_pred[aa1][aa2] = SIFTPredMetric()
DNA_base_change_syn_nonsyn_counts = {}
DNA_base_change_syn_nonsyn_counts["SYN"] = 0
DNA_base_change_syn_nonsyn_counts["STOP-GAINED"] = 0
DNA_base_change_syn_nonsyn_counts["NONSYN"] = 0
all_nonsyn_changes = SIFTPredMetric()
dbSNP_predictions = SIFTPredMetric()
novel_predictions = SIFTPredMetric()
ref_predictions = SIFTPredMetric()
#siftdb_infile = "tmp8"
#outfile = siftdb_infile + ".SIFTstats"
if len (sys.argv) != 3:
print ('check_SIFTDB.py <infile> <outfile>')
infile = sys.argv[1]
outfile = sys.argv[2]
process_chr_file (infile, DNA_base_change_syn_nonsyn_counts, DNA_base_change_aa_pred, all_nonsyn_changes, dbSNP_predictions, novel_predictions, ref_predictions, aa_change_pred)
output_results (outfile, DNA_base_change_syn_nonsyn_counts, DNA_base_change_aa_pred, all_nonsyn_changes, dbSNP_predictions, novel_predictions, ref_predictions, aa_change_pred)