-
-
Notifications
You must be signed in to change notification settings - Fork 117
/
Copy pathindex.js
602 lines (602 loc) · 26.5 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
/*! noble-secp256k1 - MIT License (c) 2019 Paul Miller (paulmillr.com) */
/**
* 4KB JS implementation of secp256k1 signatures & ECDH. Compliant with RFC6979.
* @module
*/
const B256 = 2n ** 256n;
const P = B256 - 0x1000003d1n; // curve's field prime
const N = B256 - 0x14551231950b75fc4402da1732fc9bebfn; // curve (group) order
const Gx = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798n; // base point x
const Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8n; // base point y
/**
* secp256k1 curve parameters. Equation is x³ + ax + b.
* Gx and Gy are generator coordinates. p is field order, n is group order.
*/
const CURVE = {
p: P, n: N, a: 0n, b: 7n, Gx, Gy
}; // exported variables incl. a, b
const fLen = 32; // field / group byte length
const curve = (x) => M(M(x * x) * x + CURVE.b); // x³ + ax + b weierstrass formula; a=0
const err = (m = '') => { throw new Error(m); }; // error helper, messes-up stack trace
const isB = (n) => typeof n === 'bigint'; // is big integer
const isS = (s) => typeof s === 'string'; // is string
const fe = (n) => isB(n) && 0n < n && n < P; // is field element (invertible)
const ge = (n) => isB(n) && 0n < n && n < N; // is group element
const isu8 = (a) => (a instanceof Uint8Array || (ArrayBuffer.isView(a) && a.constructor.name === 'Uint8Array'));
const au8 = (a, l) => // assert is Uint8Array (of specific length)
!isu8(a) || (typeof l === 'number' && l > 0 && a.length !== l) ?
err('Uint8Array expected') : a;
const u8n = (data) => new Uint8Array(data); // creates Uint8Array
const toU8 = (a, len) => au8(isS(a) ? h2b(a) : u8n(au8(a)), len); // norm(hex/u8a) to u8a
const M = (a, b = P) => {
const r = a % b;
return r >= 0n ? r : b + r;
};
const aPoint = (p) => (p instanceof Point ? p : err('Point expected')); // is 3d point
/** Point in 3d xyz projective coordinates. 3d takes less inversions than 2d. */
class Point {
constructor(px, py, pz) {
this.px = px;
this.py = py;
this.pz = pz;
Object.freeze(this);
}
/** Create 3d xyz point from 2d xy. (0, 0) => (0, 1, 0), not (0, 0, 1) */
static fromAffine(p) {
return ((p.x === 0n) && (p.y === 0n)) ? I : new Point(p.x, p.y, 1n);
}
/** Convert Uint8Array or hex string to Point. */
static fromHex(hex) {
hex = toU8(hex); // convert hex string to Uint8Array
let p = undefined;
const head = hex[0], tail = hex.subarray(1); // first byte is prefix, rest is data
const x = slc(tail, 0, fLen), len = hex.length; // next 32 bytes are x coordinate
if (len === 33 && [0x02, 0x03].includes(head)) { // compressed points: 33b, start
if (!fe(x))
err('Point hex invalid: x not FE'); // with byte 0x02 or 0x03. Check if 0<x<P
let y = sqrt(curve(x)); // x³ + ax + b is right side of equation
const isYOdd = (y & 1n) === 1n; // y² is equivalent left-side. Calculate y²:
const headOdd = (head & 1) === 1; // y = √y²; there are two solutions: y, -y
if (headOdd !== isYOdd)
y = M(-y); // determine proper solution
p = new Point(x, y, 1n); // create point
} // Uncompressed points: 65b, start with 0x04
if (len === 65 && head === 0x04)
p = new Point(x, slc(tail, fLen, 2 * fLen), 1n);
return p ? p.ok() : err('Point invalid: not on curve'); // Verify the result
}
/** Create point from a private key. */
static fromPrivateKey(k) { return G.mul(toPriv(k)); }
get x() { return this.aff().x; } // .x, .y will call expensive toAffine:
get y() { return this.aff().y; } // should be used with care.
/** Equality check: compare points P&Q. */
equals(other) {
const { px: X1, py: Y1, pz: Z1 } = this;
const { px: X2, py: Y2, pz: Z2 } = aPoint(other); // isPoint() checks class equality
const X1Z2 = M(X1 * Z2), X2Z1 = M(X2 * Z1);
const Y1Z2 = M(Y1 * Z2), Y2Z1 = M(Y2 * Z1);
return X1Z2 === X2Z1 && Y1Z2 === Y2Z1;
}
/** Flip point over y coordinate. */
negate() { return new Point(this.px, M(-this.py), this.pz); }
/** Point doubling: P+P, complete formula. */
double() { return this.add(this); }
/**
* Point addition: P+Q, complete, exception-free formula
* (Renes-Costello-Batina, algo 1 of [2015/1060](https://eprint.iacr.org/2015/1060)).
* Cost: 12M + 0S + 3*a + 3*b3 + 23add.
*/
add(other) {
const { px: X1, py: Y1, pz: Z1 } = this;
const { px: X2, py: Y2, pz: Z2 } = aPoint(other);
const { a, b } = CURVE;
let X3 = 0n, Y3 = 0n, Z3 = 0n;
const b3 = M(b * 3n);
let t0 = M(X1 * X2), t1 = M(Y1 * Y2), t2 = M(Z1 * Z2), t3 = M(X1 + Y1); // step 1
let t4 = M(X2 + Y2); // step 5
t3 = M(t3 * t4);
t4 = M(t0 + t1);
t3 = M(t3 - t4);
t4 = M(X1 + Z1);
let t5 = M(X2 + Z2); // step 10
t4 = M(t4 * t5);
t5 = M(t0 + t2);
t4 = M(t4 - t5);
t5 = M(Y1 + Z1);
X3 = M(Y2 + Z2); // step 15
t5 = M(t5 * X3);
X3 = M(t1 + t2);
t5 = M(t5 - X3);
Z3 = M(a * t4);
X3 = M(b3 * t2); // step 20
Z3 = M(X3 + Z3);
X3 = M(t1 - Z3);
Z3 = M(t1 + Z3);
Y3 = M(X3 * Z3);
t1 = M(t0 + t0); // step 25
t1 = M(t1 + t0);
t2 = M(a * t2);
t4 = M(b3 * t4);
t1 = M(t1 + t2);
t2 = M(t0 - t2); // step 30
t2 = M(a * t2);
t4 = M(t4 + t2);
t0 = M(t1 * t4);
Y3 = M(Y3 + t0);
t0 = M(t5 * t4); // step 35
X3 = M(t3 * X3);
X3 = M(X3 - t0);
t0 = M(t3 * t1);
Z3 = M(t5 * Z3);
Z3 = M(Z3 + t0); // step 40
return new Point(X3, Y3, Z3);
}
mul(n, safe = true) {
if (!safe && n === 0n)
return I; // in unsafe mode, allow zero
if (!ge(n))
err('scalar invalid'); // must be 0 < n < CURVE.n
if (this.equals(G))
return wNAF(n).p; // use precomputes for base point
let p = I, f = G; // init result point & fake point
for (let d = this; n > 0n; d = d.double(), n >>= 1n) { // double-and-add ladder
if (n & 1n)
p = p.add(d); // if bit is present, add to point
else if (safe)
f = f.add(d); // if not, add to fake for timing safety
}
return p;
}
mulAddQUns(R, u1, u2) {
return this.mul(u1, false).add(R.mul(u2, false)).ok(); // Unsafe: do NOT use for stuff related
} // to private keys. Doesn't use Shamir trick
/** Convert point to 2d xy affine point. (x, y, z) ∋ (x=x/z, y=y/z) */
toAffine() {
const { px: x, py: y, pz: z } = this;
if (this.equals(I))
return { x: 0n, y: 0n }; // fast-path for zero point
if (z === 1n)
return { x, y }; // if z is 1, pass affine coordinates as-is
const iz = inv(z, P); // z^-1: invert z
if (M(z * iz) !== 1n)
err('inverse invalid'); // (z * z^-1) must be 1, otherwise bad math
return { x: M(x * iz), y: M(y * iz) }; // x = x*z^-1; y = y*z^-1
}
/** Checks if the point is valid and on-curve. */
assertValidity() {
const { x, y } = this.aff(); // convert to 2d xy affine point.
if (!fe(x) || !fe(y))
err('Point invalid: x or y'); // x and y must be in range 0 < n < P
return M(y * y) === curve(x) ? // y² = x³ + ax + b, must be equal
this : err('Point invalid: not on curve');
}
multiply(n) { return this.mul(n); } // Aliases to compress code
aff() { return this.toAffine(); }
ok() { return this.assertValidity(); }
toHex(isCompressed = true) {
const { x, y } = this.aff(); // convert to 2d xy affine point
const head = isCompressed ? ((y & 1n) === 0n ? '02' : '03') : '04'; // 0x02, 0x03, 0x04 prefix
return head + n2h(x) + (isCompressed ? '' : n2h(y)); // prefix||x and ||y
}
toRawBytes(isCompressed = true) {
return h2b(this.toHex(isCompressed)); // re-use toHex(), convert hex to bytes
}
}
/** Generator / base point */
Point.BASE = new Point(Gx, Gy, 1n);
/** Identity / zero point */
Point.ZERO = new Point(0n, 1n, 0n);
const { BASE: G, ZERO: I } = Point; // Generator, identity points
const padh = (n, pad) => n.toString(16).padStart(pad, '0');
const b2h = (b) => Array.from(au8(b)).map(e => padh(e, 2)).join(''); // bytes to hex
const C = { _0: 48, _9: 57, A: 65, F: 70, a: 97, f: 102 }; // ASCII characters
const _ch = (ch) => {
if (ch >= C._0 && ch <= C._9)
return ch - C._0; // '2' => 50-48
if (ch >= C.A && ch <= C.F)
return ch - (C.A - 10); // 'B' => 66-(65-10)
if (ch >= C.a && ch <= C.f)
return ch - (C.a - 10); // 'b' => 98-(97-10)
return;
};
const h2b = (hex) => {
const e = 'hex invalid';
if (!isS(hex))
return err(e);
const hl = hex.length, al = hl / 2;
if (hl % 2)
return err(e);
const array = u8n(al);
for (let ai = 0, hi = 0; ai < al; ai++, hi += 2) { // treat each char as ASCII
const n1 = _ch(hex.charCodeAt(hi)); // parse first char, multiply it by 16
const n2 = _ch(hex.charCodeAt(hi + 1)); // parse second char
if (n1 === undefined || n2 === undefined)
return err(e);
array[ai] = n1 * 16 + n2; // example: 'A9' => 10*16 + 9
}
return array;
};
const b2n = (b) => BigInt('0x' + (b2h(b) || '0')); // bytes to number
const slc = (b, from, to) => b2n(b.slice(from, to)); // slice bytes num
const n2b = (num) => {
return isB(num) && num >= 0n && num < B256 ? h2b(padh(num, 2 * fLen)) : err('bigint expected');
};
const n2h = (num) => b2h(n2b(num)); // number to 32b hex
const concatB = (...arrs) => {
const r = u8n(arrs.reduce((sum, a) => sum + au8(a).length, 0)); // create u8a of summed length
let pad = 0; // walk through each array,
arrs.forEach(a => { r.set(a, pad); pad += a.length; }); // ensure they have proper type
return r;
};
const inv = (num, md) => {
if (num === 0n || md <= 0n)
err('no inverse n=' + num + ' mod=' + md); // no neg exponent for now
let a = M(num, md), b = md, x = 0n, y = 1n, u = 1n, v = 0n;
while (a !== 0n) { // uses euclidean gcd algorithm
const q = b / a, r = b % a; // not constant-time
const m = x - u * q, n = y - v * q;
b = a, a = r, x = u, y = v, u = m, v = n;
}
return b === 1n ? M(x, md) : err('no inverse'); // b is gcd at this point
};
const sqrt = (n) => {
let r = 1n; // So, a special, fast case. Paper: "Square Roots from 1;24,51,10 to Dan Shanks".
for (let num = n, e = (P + 1n) / 4n; e > 0n; e >>= 1n) { // powMod: modular exponentiation.
if (e & 1n)
r = (r * num) % P; // Uses exponentiation by squaring.
num = (num * num) % P; // Not constant-time.
}
return M(r * r) === n ? r : err('sqrt invalid'); // check if result is valid
};
const toPriv = (p) => {
if (!isB(p))
p = b2n(toU8(p, fLen)); // convert to bigint when bytes
return ge(p) ? p : err('private key invalid 3'); // check if bigint is in range
};
const high = (n) => n > (N >> 1n); // if a number is bigger than CURVE.n/2
/** Creates 33/65-byte public key from 32-byte private key. */
const getPublicKey = (privKey, isCompressed = true) => {
return Point.fromPrivateKey(privKey).toRawBytes(isCompressed);
};
/** ECDSA Signature class. Supports only compact 64-byte representation, not DER. */
class Signature {
constructor(r, s, recovery) {
this.r = r;
this.s = s;
this.recovery = recovery;
this.assertValidity(); // recovery bit is optional when
} // constructed outside.
/** Create signature from 64b compact (r || s) representation. */
static fromCompact(hex) {
hex = toU8(hex, 64); // compact repr is (32b r)||(32b s)
return new Signature(slc(hex, 0, fLen), slc(hex, fLen, 2 * fLen));
}
assertValidity() { return ge(this.r) && ge(this.s) ? this : err(); } // 0 < r or s < CURVE.n
/** Create new signature, with added recovery bit. */
addRecoveryBit(rec) {
return new Signature(this.r, this.s, rec);
}
hasHighS() { return high(this.s); }
normalizeS() {
return high(this.s) ? new Signature(this.r, M(-this.s, N), this.recovery) : this;
}
/** ECDSA public key recovery. Requires msg hash and recovery id. */
recoverPublicKey(msgh) {
const { r, s, recovery: rec } = this; // secg.org/sec1-v2.pdf 4.1.6
if (![0, 1, 2, 3].includes(rec))
err('recovery id invalid'); // check recovery id
const h = bits2int_modN(toU8(msgh, fLen)); // Truncate hash
const radj = rec === 2 || rec === 3 ? r + N : r; // If rec was 2 or 3, q.x is bigger than n
if (radj >= P)
err('q.x invalid'); // ensure q.x is still a field element
const head = (rec & 1) === 0 ? '02' : '03'; // head is 0x02 or 0x03
const R = Point.fromHex(head + n2h(radj)); // concat head + hex repr of r
const ir = inv(radj, N); // r^-1
const u1 = M(-h * ir, N); // -hr^-1
const u2 = M(s * ir, N); // sr^-1
return G.mulAddQUns(R, u1, u2); // (sr^-1)R-(hr^-1)G = -(hr^-1)G + (sr^-1)
}
/** Uint8Array 64b compact (r || s) representation. */
toCompactRawBytes() { return h2b(this.toCompactHex()); }
/** Hex string 64b compact (r || s) representation. */
toCompactHex() { return n2h(this.r) + n2h(this.s); }
}
const bits2int = (bytes) => {
const delta = bytes.length * 8 - 256; // RFC suggests optional truncating via bits2octets
if (delta > 1024)
err('msg invalid'); // our CUSTOM check, "just-in-case"
const num = b2n(bytes); // FIPS 186-4 4.6 suggests the leftmost min(nBitLen, outLen) bits, which
return delta > 0 ? num >> BigInt(delta) : num; // matches bits2int. bits2int can produce res>N.
};
const bits2int_modN = (bytes) => {
return M(bits2int(bytes), N); // with 0: BAD for trunc as per RFC vectors
};
const i2o = (num) => n2b(num); // int to octets
const cr = () => // We support: 1) browsers 2) node.js 19+ 3) deno, other envs with crypto
typeof globalThis === 'object' && 'crypto' in globalThis ? globalThis.crypto : undefined;
let _hmacSync; // Can be redefined by use in utils; built-ins don't provide it
const optS = { lowS: true }; // opts for sign()
const optV = { lowS: true }; // standard opts for verify()
const prepSig = (msgh, priv, opts = optS) => {
if (['der', 'recovered', 'canonical'].some(k => k in opts))
err('option not supported'); // legacy opts
let { lowS } = opts; // generates low-s sigs by default
if (lowS == null)
lowS = true; // RFC6979 3.2: we skip step A
const h1i = bits2int_modN(toU8(msgh)); // msg bigint
const h1o = i2o(h1i); // msg octets
const d = toPriv(priv); // validate private key, convert to bigint
const seed = [i2o(d), h1o]; // Step D of RFC6979 3.2
let ent = opts.extraEntropy; // RFC6979 3.6: additional k' (optional)
if (ent) // K = HMAC_K(V || 0x00 || int2octets(x) || bits2octets(h1) || k')
seed.push(ent === true ? etc.randomBytes(fLen) : toU8(ent)); // true == fetch from CSPRNG
const m = h1i; // convert msg to bigint
const k2sig = (kBytes) => {
const k = bits2int(kBytes); // RFC6979 method.
if (!ge(k))
return; // Check 0 < k < CURVE.n
const ik = inv(k, N); // k^-1 mod n, NOT mod P
const q = G.mul(k).aff(); // q = Gk
const r = M(q.x, N); // r = q.x mod n
if (r === 0n)
return; // r=0 invalid
const s = M(ik * M(m + M(d * r, N), N), N); // s = k^-1(m + rd) mod n
if (s === 0n)
return; // s=0 invalid
let normS = s; // normalized S
let rec = (q.x === r ? 0 : 2) | Number(q.y & 1n); // recovery bit
if (lowS && high(s)) { // if lowS was passed, ensure s is always
normS = M(-s, N); // in the bottom half of CURVE.n
rec ^= 1;
}
return new Signature(r, normS, rec); // use normS, not s
};
return { seed: concatB(...seed), k2sig };
};
function hmacDrbg(asynchronous) {
let v = u8n(fLen); // Minimal non-full-spec HMAC-DRBG from NIST 800-90 for RFC6979 sigs.
let k = u8n(fLen); // Steps B, C of RFC6979 3.2: set hashLen, in our case always same
let i = 0; // Iterations counter, will throw when over 1000
const reset = () => { v.fill(1); k.fill(0); i = 0; };
const _e = 'drbg: tried 1000 values';
if (asynchronous) { // asynchronous=true
const h = (...b) => etc.hmacSha256Async(k, v, ...b); // hmac(k)(v, ...values)
const reseed = async (seed = u8n()) => {
k = await h(u8n([0x00]), seed); // k = hmac(K || V || 0x00 || seed)
v = await h(); // v = hmac(K || V)
if (seed.length === 0)
return;
k = await h(u8n([0x01]), seed); // k = hmac(K || V || 0x01 || seed)
v = await h(); // v = hmac(K || V)
};
const gen = async () => {
if (i++ >= 1000)
err(_e);
v = await h(); // v = hmac(K || V)
return v;
};
return async (seed, pred) => {
reset(); // the returned fn, don't, it's: 1. slower (JIT). 2. unsafe (async race conditions)
await reseed(seed); // Steps D-G
let res = undefined; // Step H: grind until k is in [1..n-1]
while (!(res = pred(await gen())))
await reseed(); // test predicate until it returns ok
reset();
return res;
};
}
else {
const h = (...b) => {
const f = _hmacSync;
if (!f)
err('etc.hmacSha256Sync not set');
return f(k, v, ...b); // hmac(k)(v, ...values)
};
const reseed = (seed = u8n()) => {
k = h(u8n([0x00]), seed); // k = hmac(k || v || 0x00 || seed)
v = h(); // v = hmac(k || v)
if (seed.length === 0)
return;
k = h(u8n([0x01]), seed); // k = hmac(k || v || 0x01 || seed)
v = h(); // v = hmac(k || v)
};
const gen = () => {
if (i++ >= 1000)
err(_e);
v = h(); // v = hmac(k || v)
return v;
};
return (seed, pred) => {
reset();
reseed(seed); // Steps D-G
let res = undefined; // Step H: grind until k is in [1..n-1]
while (!(res = pred(gen())))
reseed(); // test predicate until it returns ok
reset();
return res;
};
}
}
;
/** ECDSA signature generation. via secg.org/sec1-v2.pdf 4.1.2 + RFC6979 deterministic k. */
/**
* Sign a msg hash using secp256k1. Async.
* It is advised to use `extraEntropy: true` (from RFC6979 3.6) to prevent fault attacks.
* Worst case: if randomness source for extraEntropy is bad, it would be as secure as if
* the option has not been used.
* @param msgh - message HASH, not message itself e.g. sha256(message)
* @param priv - private key
* @param opts - `lowS: true` to prevent malleability (s >= CURVE.n/2), `extraEntropy: boolean | Hex` to improve sig security.
*/
const signAsync = async (msgh, priv, opts = optS) => {
const { seed, k2sig } = prepSig(msgh, priv, opts); // Extract arguments for hmac-drbg
return hmacDrbg(true)(seed, k2sig); // Re-run drbg until k2sig returns ok
};
/**
* Sign a msg hash using secp256k1.
* It is advised to use `extraEntropy: true` (from RFC6979 3.6) to prevent fault attacks.
* Worst case: if randomness source for extraEntropy is bad, it would be as secure as if
* the option has not been used.
* @param msgh - message HASH, not message itself e.g. sha256(message)
* @param priv - private key
* @param opts - `lowS: true` to prevent malleability (s >= CURVE.n/2), `extraEntropy: boolean | Hex` to improve sig security.
* @example
* const sig = sign(sha256('hello'), privKey, { extraEntropy: true }).toCompactRawBytes();
*/
const sign = (msgh, priv, opts = optS) => {
const { seed, k2sig } = prepSig(msgh, priv, opts); // Extract arguments for hmac-drbg
return hmacDrbg(false)(seed, k2sig); // Re-run drbg until k2sig returns ok
};
/**
* Verify a signature using secp256k1.
* @param sig - signature, 64-byte or Signature instance
* @param msgh - message HASH, not message itself e.g. sha256(message)
* @param pub - public key
* @param opts - { lowS: true } is default, prohibits s >= CURVE.n/2 to prevent malleability
*/
const verify = (sig, msgh, pub, opts = optV) => {
let { lowS } = opts; // ECDSA signature verification
if (lowS == null)
lowS = true; // Default lowS=true
if ('strict' in opts)
err('option not supported'); // legacy param
let sig_, h, P; // secg.org/sec1-v2.pdf 4.1.4
const rs = sig && typeof sig === 'object' && 'r' in sig; // Previous ver supported DER sigs. We
if (!rs && (toU8(sig).length !== 2 * fLen)) // throw error when DER is suspected now.
err('signature must be 64 bytes');
try {
sig_ = rs ? new Signature(sig.r, sig.s).assertValidity() : Signature.fromCompact(sig);
h = bits2int_modN(toU8(msgh)); // Truncate hash
P = pub instanceof Point ? pub.ok() : Point.fromHex(pub); // Validate public key
}
catch (e) {
return false;
} // Check sig for validity in both cases
if (!sig_)
return false;
const { r, s } = sig_;
if (lowS && high(s))
return false; // lowS bans sig.s >= CURVE.n/2
let R;
try {
const is = inv(s, N); // s^-1
const u1 = M(h * is, N); // u1 = hs^-1 mod n
const u2 = M(r * is, N); // u2 = rs^-1 mod n
R = G.mulAddQUns(P, u1, u2).aff(); // R = u1⋅G + u2⋅P
}
catch (error) {
return false;
}
if (!R)
return false; // stop if R is identity / zero point
const v = M(R.x, N); // R.x must be in N's field, not P's
return v === r; // mod(R.x, n) == r
};
/**
* Elliptic Curve Diffie-Hellman (ECDH) on secp256k1.
* Result is **NOT hashed**. Use hash on it if you need.
* @param privA private key A
* @param pubB public key B
* @param isCompressed 33-byte or 65-byte output
* @returns public key C
*/
const getSharedSecret = (privA, pubB, isCompressed = true) => {
return Point.fromHex(pubB).mul(toPriv(privA)).toRawBytes(isCompressed); // ECDH
};
const hashToPrivateKey = (hash) => {
hash = toU8(hash); // produces private keys with modulo bias
if (hash.length < fLen + 8 || hash.length > 1024)
err('expected 40-1024b'); // being neglible.
const num = M(b2n(hash), N - 1n); // takes n+8 bytes
return n2b(num + 1n); // returns (hash mod n-1)+1
};
/** Math, hex, byte helpers. Not in `utils` because utils share API with noble-curves. */
const etc = {
hexToBytes: h2b,
bytesToHex: b2h,
concatBytes: concatB,
bytesToNumberBE: b2n,
numberToBytesBE: n2b,
mod: M,
invert: inv, // math utilities
hmacSha256Async: async (key, ...msgs) => {
const c = cr(); // async HMAC-SHA256, no sync built-in!
const s = c && c.subtle; // For React Native support, see README.
if (!s)
return err('etc.hmacSha256Async or crypto.subtle must be defined'); // Uses webcrypto built-in cryptography.
const k = await s.importKey('raw', key, { name: 'HMAC', hash: { name: 'SHA-256' } }, false, ['sign']);
return u8n(await s.sign('HMAC', k, concatB(...msgs)));
},
hmacSha256Sync: _hmacSync, // For TypeScript. Actual logic is below
hashToPrivateKey: hashToPrivateKey,
randomBytes: (len = 32) => {
const crypto = cr(); // Must be shimmed in node.js <= 18 to prevent error. See README.
if (!crypto || !crypto.getRandomValues)
err('crypto.getRandomValues must be defined');
return crypto.getRandomValues(u8n(len));
},
};
/** Curve-specific utilities for private keys. */
const utils = {
normPrivateKeyToScalar: toPriv,
isValidPrivateKey: (key) => { try {
return !!toPriv(key);
}
catch (e) {
return false;
} },
randomPrivateKey: () => hashToPrivateKey(etc.randomBytes(fLen + 16)), // FIPS 186 B.4.1.
precompute: (w = 8, p = G) => { p.multiply(3n); w; return p; }, // no-op
};
Object.defineProperties(etc, { hmacSha256Sync: {
configurable: false, get() { return _hmacSync; }, set(f) { if (!_hmacSync)
_hmacSync = f; },
} });
const W = 8; // Precomputes-related code. W = window size
const precompute = () => {
const points = []; // 10x sign(), 2x verify(). To achieve this,
const windows = 256 / W + 1; // app needs to spend 40ms+ to calculate
let p = G, b = p; // a lot of points related to base point G.
for (let w = 0; w < windows; w++) { // Points are stored in array and used
b = p; // any time Gx multiplication is done.
points.push(b); // They consume 16-32 MiB of RAM.
for (let i = 1; i < 2 ** (W - 1); i++) {
b = b.add(p);
points.push(b);
}
p = b.double(); // Precomputes don't speed-up getSharedKey,
} // which multiplies user point by scalar,
return points; // when precomputes are using base point
};
let Gpows = undefined; // precomputes for base point G
const wNAF = (n) => {
// Compared to other point mult methods,
const comp = Gpows || (Gpows = precompute()); // stores 2x less points using subtraction
const neg = (cnd, p) => { let n = p.negate(); return cnd ? n : p; }; // negate
let p = I, f = G; // f must be G, or could become I in the end
const windows = 1 + 256 / W; // W=8 17 windows
const wsize = 2 ** (W - 1); // W=8 128 window size
const mask = BigInt(2 ** W - 1); // W=8 will create mask 0b11111111
const maxNum = 2 ** W; // W=8 256
const shiftBy = BigInt(W); // W=8 8
for (let w = 0; w < windows; w++) {
const off = w * wsize;
let wbits = Number(n & mask); // extract W bits.
n >>= shiftBy; // shift number by W bits.
if (wbits > wsize) {
wbits -= maxNum;
n += 1n;
} // split if bits > max: +224 => 256-32
const off1 = off, off2 = off + Math.abs(wbits) - 1; // offsets, evaluate both
const cnd1 = w % 2 !== 0, cnd2 = wbits < 0; // conditions, evaluate both
if (wbits === 0) {
f = f.add(neg(cnd1, comp[off1])); // bits are 0: add garbage to fake point
}
else { // ^ can't add off2, off2 = I
p = p.add(neg(cnd2, comp[off2])); // bits are 1: add to result point
}
}
return { p, f }; // return both real and fake points for JIT
}; // !! you can disable precomputes by commenting-out call of the wNAF() inside Point#mul()
export { getPublicKey, sign, signAsync, verify, CURVE, // Remove the export to easily use in REPL
getSharedSecret, etc, utils, Point as ProjectivePoint, Signature }; // envs like browser console