-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
170 lines (143 loc) · 5.96 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import argparse
import tensorflow as tf
import gym
import numpy as np
from ReplayBuffer import PrioritizedReplay, UniformReplay
from agents import DQNAgent, ActorCriticAgent
hyperparams = {
'gamma': 0.99,
'max_experiences': 10000,
'min_experiences': 1000,
'batch_size': 32,
'learning_rate_dqn': 1e-3,
'learning_rate_actor': 1e-3,
'learning_rate_critic': 1e-3,
'environment': 'Acrobot-v1',
'hidden_layer_dqn': [128],
'hidden_layer_actor': [128],
'hidden_layer_critic': [128],
'episodes': 100,
'epsilon': 0.99,
'min_epsilon': 0.1,
'decay': 0.9,
}
# Training method for Actor critic
def start_training_ac():
env = gym.make(hyperparams['environment'])
state_spec = len(env.observation_space.sample())
action_spec = env.action_space.n
log_name = 'final_build'
log_dir = 'logs/acrobotAC/' + log_name
log_writer = tf.summary.create_file_writer(log_dir)
# Init the AC agent
agent = ActorCriticAgent(hyperparams['hidden_layer_actor'], hyperparams['hidden_layer_critic'], state_spec,
action_spec, hyperparams['learning_rate_actor'], hyperparams['learning_rate_critic'])
# Metric for the tensorboard
total_rewards = np.empty(hyperparams['episodes'])
for episode in range(hyperparams['episodes']):
episode_reward = 0
done = False
state = env.reset()
while not done:
next_state, reward, done = agent.play_and_train(state, env, hyperparams['gamma'])
episode_reward += reward
state = next_state
total_rewards[episode] = episode_reward
avg_rewards = total_rewards[max(0, episode - 20):(episode + 1)].mean()
env.reset()
with log_writer.as_default():
tf.summary.scalar('episode reward', episode_reward, step=episode)
tf.summary.scalar('avg for 20 episodes', avg_rewards, step=episode)
agent.actor_network.save_weights('actor_network.h5')
# Training method for dqn
def start_training_dqn(is_prioritized):
if is_prioritized:
prio = "with_priority"
else:
prio = "no_priority"
env = gym.make(hyperparams['environment'])
state_spec = len(env.observation_space.sample())
action_spec = env.action_space.n
log_name = 'final_build' + prio
log_dir = 'logs/acrobot/' + log_name
log_writer = tf.summary.create_file_writer(log_dir)
epsilon = hyperparams['epsilon']
buffer = PrioritizedReplay(hyperparams['max_experiences']) if is_prioritized else UniformReplay(
hyperparams['max_experiences'])
agent = DQNAgent(hyperparams['hidden_layer_dqn'], state_spec, action_spec, buffer, hyperparams['learning_rate_dqn'],
is_prioritized)
total_rewards = np.empty(hyperparams['episodes'])
for episode in range(hyperparams['episodes']):
episode_reward = 0
epsilon = max(hyperparams['min_epsilon'], epsilon * hyperparams['decay'])
done = False
state = env.reset()
while not done:
action = agent.play_action(state, epsilon)
next_state, reward, done, _ = env.step(action)
episode_reward += reward
buffer.add((state, action, reward, next_state, done))
state = next_state
if len(buffer.experiences) > hyperparams['min_experiences']:
agent.train(hyperparams['gamma'], hyperparams['batch_size'])
total_rewards[episode] = episode_reward
avg_rewards = total_rewards[max(0, episode - 20):(episode + 1)].mean()
env.reset()
with log_writer.as_default():
tf.summary.scalar('episode reward', episode_reward, step=episode)
tf.summary.scalar('avg for 20 episodes', avg_rewards, step=episode)
agent.network.save_weights('dqn_{}_network.h5'.format(prio))
env.close()
def test_model(model, is_ac):
env = gym.make(hyperparams['environment'])
state_spec = len(env.observation_space.sample())
action_spec = env.action_space.n
buffer = None
is_prioritized = False
if is_ac:
agent = ActorCriticAgent(hyperparams['hidden_layer_actor'], hyperparams['hidden_layer_critic'], state_spec,
action_spec, hyperparams['learning_rate_actor'], hyperparams['learning_rate_critic'])
agent.actor_network.load_weights(model)
else:
agent = DQNAgent(hyperparams['hidden_layer_dqn'], state_spec, action_spec, buffer,
hyperparams['learning_rate_dqn'],
is_prioritized)
agent.network.load_weights(model)
obs = env.reset()
env.render()
# Play 20 episodes
for i in range(20):
rewards = []
while True:
if is_ac:
action = agent.play_action(obs)
else:
action = agent.play_action(obs, hyperparams['min_epsilon'])
obs, reward, done, _ = env.step(action)
env.render()
rewards.append(reward)
if done:
print("Gathered {} reward".format(np.sum(rewards)))
env.reset()
break
env.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--mode', help="One between {train|test}", choices=['train', 'test'], type=str, required=True,
dest='mode')
parser.add_argument('--per', help="Use this if you want experience replay", action="store_true", dest='per',
default=False)
parser.add_argument('--model', help="the model you want to test", type=str, dest='model')
parser.add_argument('--ac', help="Use actor critic", action="store_true", dest='ac')
args = parser.parse_args()
if args.mode == 'train':
print('TRAIN')
print("PER", args.per)
print("Actor critic", args.ac)
if args.ac:
start_training_ac()
else:
start_training_dqn(args.per)
elif args.mode == 'test':
print('test')
test_model(args.model, args.ac)