-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProblem4.py
36 lines (31 loc) · 980 Bytes
/
Problem4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from Project5_HelperFeature import extract_feat
import json
import datetime
from math import ceil
import datetime
import pytz
import numpy as np
import dateutil.parser
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
from sklearn.linear_model import LinearRegression
from Problem3 import LR, TP
import statsmodels.api as sm
pst_tz = pytz.timezone('America/Los_Angeles')
names = ["tweets_#gohawks.txt", "tweets_#gopatriots.txt", \
"tweets_#nfl.txt", "tweets_#patriots.txt", "tweets_#sb49.txt", "tweets_#superbowl.txt"]
if __name__ == '__main__':
'''
for i in range(0,6):
p = extract_feat(names[i],flag = 1)
a,b = LR(p.values)
print("MSE and r2_score:\t" + str(a) + ", " + str(b))
print
print("Writing t- and p- values:")
'''
print('\n')
for i in range(0,6):
p = extract_feat(names[i], flag = 1)
TP(p.values, i)
print('\n')