-
Notifications
You must be signed in to change notification settings - Fork 91
/
Copy pathnerfstudio.cpp
169 lines (141 loc) · 5.45 KB
/
nerfstudio.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#include <filesystem>
#include <cstdlib>
#include <nlohmann/json.hpp>
#include "nerfstudio.hpp"
#include "point_io.hpp"
#include "cv_utils.hpp"
#include "tensor_math.hpp"
namespace fs = std::filesystem;
using json = nlohmann::json;
using namespace torch::indexing;
namespace ns{
void to_json(json &j, const Frame &f){
j = json{ {"file_path", f.filePath },
{"w", f.width },
{"h", f.height },
{"fl_x", f.fx },
{"fl_y", f.fy },
{"cx", f.cx },
{"cy", f.cy },
{"k1", f.k1 },
{"k2", f.k2 },
{"p1", f.p1 },
{"p2", f.p2 },
{"k3", f.k3 },
{"transform_matrix", f.transformMatrix },
};
}
void from_json(const json& j, Frame &f){
j.at("file_path").get_to(f.filePath);
j.at("transform_matrix").get_to(f.transformMatrix);
if (j.contains("w")) j.at("w").get_to(f.width);
if (j.contains("h")) j.at("h").get_to(f.height);
if (j.contains("fl_x")) j.at("fl_x").get_to(f.fx);
if (j.contains("fl_y")) j.at("fl_y").get_to(f.fy);
if (j.contains("cx")) j.at("cx").get_to(f.cx);
if (j.contains("cy")) j.at("cy").get_to(f.cy);
if (j.contains("k1")) j.at("k1").get_to(f.k1);
if (j.contains("k2")) j.at("k2").get_to(f.k2);
if (j.contains("p1")) j.at("p1").get_to(f.p1);
if (j.contains("p2")) j.at("p2").get_to(f.p2);
if (j.contains("k3")) j.at("k3").get_to(f.k3);
}
void to_json(json &j, const Transforms &t){
j = json{ {"camera_model", t.cameraModel },
{"frames", t.frames },
{"ply_file_path", t.plyFilePath },
};
}
void from_json(const json& j, Transforms &t){
j.at("camera_model").get_to(t.cameraModel);
j.at("frames").get_to(t.frames);
if (j.contains("ply_file_path")) j.at("ply_file_path").get_to(t.plyFilePath);
// Globals
int width = 0;
int height = 0;
float fx = 0;
float fy = 0;
float cx = 0;
float cy = 0;
float k1 = 0;
float k2 = 0;
float k3 = 0;
float p1 = 0;
float p2 = 0;
if (j.contains("w")) j.at("w").get_to(width);
if (j.contains("h")) j.at("h").get_to(height);
if (j.contains("fl_x")) j.at("fl_x").get_to(fx);
if (j.contains("fl_y")) j.at("fl_y").get_to(fy);
if (j.contains("cx")) j.at("cx").get_to(cx);
if (j.contains("cy")) j.at("cy").get_to(cy);
if (j.contains("k1")) j.at("k1").get_to(k1);
if (j.contains("k2")) j.at("k2").get_to(k2);
if (j.contains("p1")) j.at("p1").get_to(p1);
if (j.contains("p2")) j.at("p2").get_to(p2);
if (j.contains("k3")) j.at("k3").get_to(k3);
// Assign per-frame intrinsics if missing
for (Frame &f : t.frames){
if (!f.width && width) f.width = width;
if (!f.height && height) f.height = height;
if (!f.fx && fx) f.fx = fx;
if (!f.fy && fy) f.fy = fy;
if (!f.cx && cx) f.cx = cx;
if (!f.cy && cy) f.cy = cy;
if (!f.k1 && k1) f.k1 = k1;
if (!f.k2 && k2) f.k2 = k2;
if (!f.p1 && p1) f.p1 = p1;
if (!f.p2 && p2) f.p2 = p2;
if (!f.k3 && k3) f.k3 = k3;
}
std::sort(t.frames.begin(), t.frames.end(),
[](Frame const &a, Frame const &b) {
return a.filePath < b.filePath;
});
}
Transforms readTransforms(const std::string &filename){
std::ifstream f(filename);
json data = json::parse(f);
f.close();
return data.template get<Transforms>();
}
torch::Tensor posesFromTransforms(const Transforms &t){
torch::Tensor poses = torch::zeros({static_cast<long int>(t.frames.size()), 4, 4}, torch::kFloat32);
for (size_t c = 0; c < t.frames.size(); c++){
for (size_t i = 0; i < 4; i++){
for (size_t j = 0; j < 4; j++){
poses[c][i][j] = t.frames[c].transformMatrix[i][j];
}
}
}
return poses;
}
InputData inputDataFromNerfStudio(const std::string &projectRoot){
InputData ret;
fs::path nsRoot(projectRoot);
fs::path transformsPath = nsRoot / "transforms.json";
if (!fs::exists(transformsPath)) throw std::runtime_error(transformsPath.string() + " does not exist");
Transforms t = readTransforms(transformsPath.string());
if (t.plyFilePath.empty()) throw std::runtime_error("ply_file_path is empty");
PointSet *pSet = readPointSet((nsRoot / t.plyFilePath).string());
torch::Tensor unorientedPoses = posesFromTransforms(t);
auto r = autoScaleAndCenterPoses(unorientedPoses);
torch::Tensor poses = std::get<0>(r);
ret.translation = std::get<1>(r);
ret.scale = std::get<2>(r);
// aabbScale = [[-1.0, -1.0, -1.0], [1.0, 1.0, 1.0]]
for (size_t i = 0; i < t.frames.size(); i++){
Frame f = t.frames[i];
ret.cameras.emplace_back(Camera(f.width, f.height,
static_cast<float>(f.fx), static_cast<float>(f.fy),
static_cast<float>(f.cx), static_cast<float>(f.cy),
static_cast<float>(f.k1), static_cast<float>(f.k2), static_cast<float>(f.k3),
static_cast<float>(f.p1), static_cast<float>(f.p2),
poses[i], (nsRoot / f.filePath).string()));
}
torch::Tensor points = pSet->pointsTensor().clone();
ret.points.xyz = (points - ret.translation) * ret.scale;
ret.points.rgb = pSet->colorsTensor().clone();
RELEASE_POINTSET(pSet);
return ret;
}
}