-
Notifications
You must be signed in to change notification settings - Fork 558
/
Copy pathtracker.py
153 lines (124 loc) · 4.53 KB
/
tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright 2019-2020 Stanislav Pidhorskyi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import csv
from collections import OrderedDict
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg')
import numpy as np
import torch
import os
class RunningMean:
def __init__(self):
self._mean = 0.0
self.n = 0
def __iadd__(self, value):
self._mean = (float(value) + self._mean * self.n)/(self.n + 1)
self.n += 1
return self
def reset(self):
self._mean = 0.0
self.n = 0
def mean(self):
return self._mean
class RunningMeanTorch:
def __init__(self):
self.values = []
def __iadd__(self, value):
with torch.no_grad():
self.values.append(value.detach().cpu().unsqueeze(0))
return self
def reset(self):
self.values = []
def mean(self):
with torch.no_grad():
if len(self.values) == 0:
return 0.0
return float(torch.cat(self.values).mean().item())
class LossTracker:
def __init__(self, output_folder='.'):
self.tracks = OrderedDict()
self.epochs = []
self.means_over_epochs = OrderedDict()
self.output_folder = output_folder
def update(self, d):
for k, v in d.items():
if k not in self.tracks:
self.add(k, isinstance(v, torch.Tensor))
self.tracks[k] += v
def add(self, name, pytorch=True):
assert name not in self.tracks, "Name is already used"
if pytorch:
track = RunningMeanTorch()
else:
track = RunningMean()
self.tracks[name] = track
self.means_over_epochs[name] = []
return track
def register_means(self, epoch):
self.epochs.append(epoch)
for key in self.means_over_epochs.keys():
if key in self.tracks:
value = self.tracks[key]
self.means_over_epochs[key].append(value.mean())
value.reset()
else:
self.means_over_epochs[key].append(None)
with open(os.path.join(self.output_folder, 'log.csv'), mode='w') as csv_file:
fieldnames = ['epoch'] + list(self.tracks.keys())
writer = csv.writer(csv_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
writer.writerow(fieldnames)
for i in range(len(self.epochs)):
writer.writerow([self.epochs[i]] + [self.means_over_epochs[x][i] for x in self.tracks.keys()])
def __str__(self):
result = ""
for key, value in self.tracks.items():
result += "%s: %.7f, " % (key, value.mean())
return result[:-2]
def plot(self):
fig = plt.figure()
fig.set_size_inches(12, 8)
ax = fig.add_subplot(111)
for key in self.tracks.keys():
try:
plt.plot(self.epochs, self.means_over_epochs[key], label=key)
except ValueError:
continue
ax.set_xlabel('Epoch')
ax.set_ylabel('Loss')
ax.legend(loc=4)
ax.grid(True)
fig.tight_layout()
fig.savefig(os.path.join(self.output_folder, 'plot.png'))
fig.clf()
plt.close()
def state_dict(self):
return {
'tracks': self.tracks,
'epochs': self.epochs,
'means_over_epochs': self.means_over_epochs}
def load_state_dict(self, state_dict):
self.tracks = state_dict['tracks']
self.epochs = state_dict['epochs']
self.means_over_epochs = state_dict['means_over_epochs']
counts = list(map(len, self.means_over_epochs.values()))
if len(counts) == 0:
counts = [0]
m = min(counts)
if m < len(self.epochs):
self.epochs = self.epochs[:m]
for key in self.means_over_epochs.keys():
if len(self.means_over_epochs[key]) > m:
self.means_over_epochs[key] = self.means_over_epochs[key][:m]