forked from tmbdev-tutorials/dl-2018
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflex.py
130 lines (105 loc) · 3.23 KB
/
flex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Copyright (c) 2017 NVIDIA CORPORATION. All rights reserved.
# See the LICENSE file for licensing terms (BSD-style).
import numpy as np
import torch
from torch import nn
from torch import autograd
from torch.autograd import Variable
from torch.legacy import nn as legnn
import numpy as np
import torch
from torch import nn
from torch import autograd
from torch.autograd import Variable
from torch.legacy import nn as legnn
import layers
class Flex(nn.Module):
def __init__(self, creator):
super(Flex, self).__init__()
self.creator = creator
self.layer = None
self.dummy = nn.Parameter(torch.zeros(1))
def forward(self, *args):
if self.layer is None:
self.layer = self.creator(*args)
self.layer.to(self.dummy.device)
return self.layer.forward(*args)
def __repr__(self):
return "Flex:"+repr(self.layer)
def __str__(self):
return "Flex:"+str(self.layer)
def Linear(*args, **kw):
def creator(x):
assert x.ndimension()==2
return nn.Linear(x.size(1), *args, **kw)
return Flex(creator)
def Conv1d(*args, **kw):
def creator(x):
assert x.ndimension()==3
d = x.size(1)
return nn.Conv1d(x.size(1), *args, **kw)
return Flex(creator)
def Conv2d(*args, **kw):
def creator(x):
assert x.ndimension()==4
return nn.Conv2d(x.size(1), *args, **kw)
return Flex(creator)
def Conv3d(*args, **kw):
def creator(x):
assert x.ndimension()==5
return nn.Conv3d(x.size(1), *args, **kw)
return Flex(creator)
def Lstm1(*args, **kw):
def creator(x):
assert x.ndimension()==3
return layers.LSTM1(x.size(1), *args, **kw)
return Flex(creator)
def LSTM1to0(*args, **kw):
def creator(x):
assert x.ndimension()==3
return layers.Lstm1to0(x.size(1), *args, **kw)
return Flex(creator)
def Lstm2(*args, **kw):
def creator(x):
assert x.ndimension()==4
return layers.LSTM2(x.size(1), *args, **kw)
return Flex(creator)
def Lstm2to1(*args, **kw):
def creator(x):
assert x.ndimension()==4
return layers.LSTM2to1(x.size(1), *args, **kw)
return Flex(creator)
def BatchNorm1d(*args, **kw):
def creator(x):
assert x.ndimension()==3
return nn.BatchNorm1d(x.size(1), *args, **kw)
return Flex(creator)
def BatchNorm2d(*args, **kw):
def creator(x):
assert x.ndimension()==4
return nn.BatchNorm2d(x.size(1), *args, **kw)
return Flex(creator)
def BatchNorm3d(*args, **kw):
def creator(x):
assert x.ndimension()==5
return nn.BatchNorm3d(x.size(1), *args, **kw)
return Flex(creator)
def replace_modules(model, f):
for key in model._modules.keys():
sub = model._modules[key]
replacement = f(sub)
if replacement is not None:
model._modules[key] = replacement
else:
replace_modules(sub, f)
def flex_replacer(module):
if isinstance(module, Flex):
return module.layer
else:
return None
def flex_freeze(model):
replace_modules(model, flex_replacer)
def delete_modules(model, f):
for key in model._modules.keys():
if f(model._modules[key]):
del model._modules[key]