-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathdevice-energy-management-server.cpp
928 lines (813 loc) · 35.1 KB
/
device-energy-management-server.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
/*
* Copyright (c) 2023 Project CHIP Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "device-energy-management-server.h"
#include <app/AttributeAccessInterface.h>
#include <app/AttributeAccessInterfaceRegistry.h>
#include <app/CommandHandlerInterfaceRegistry.h>
#include <app/ConcreteAttributePath.h>
#include <app/InteractionModelEngine.h>
#include <app/util/attribute-storage.h>
using namespace chip;
using namespace chip::app;
using namespace chip::app::Clusters;
using namespace chip::app::Clusters::DeviceEnergyManagement;
using namespace chip::app::Clusters::DeviceEnergyManagement::Attributes;
using chip::Protocols::InteractionModel::Status;
namespace chip {
namespace app {
namespace Clusters {
namespace DeviceEnergyManagement {
CHIP_ERROR Instance::Init()
{
ReturnErrorOnFailure(CommandHandlerInterfaceRegistry::Instance().RegisterCommandHandler(this));
VerifyOrReturnError(AttributeAccessInterfaceRegistry::Instance().Register(this), CHIP_ERROR_INCORRECT_STATE);
return CHIP_NO_ERROR;
}
void Instance::Shutdown()
{
CommandHandlerInterfaceRegistry::Instance().UnregisterCommandHandler(this);
AttributeAccessInterfaceRegistry::Instance().Unregister(this);
}
bool Instance::HasFeature(Feature aFeature) const
{
return mFeature.Has(aFeature);
}
// AttributeAccessInterface
CHIP_ERROR Instance::Read(const ConcreteReadAttributePath & aPath, AttributeValueEncoder & aEncoder)
{
switch (aPath.mAttributeId)
{
case ESAType::Id:
return aEncoder.Encode(mDelegate.GetESAType());
case ESACanGenerate::Id:
return aEncoder.Encode(mDelegate.GetESACanGenerate());
case ESAState::Id:
return aEncoder.Encode(mDelegate.GetESAState());
case AbsMinPower::Id:
return aEncoder.Encode(mDelegate.GetAbsMinPower());
case AbsMaxPower::Id:
return aEncoder.Encode(mDelegate.GetAbsMaxPower());
case PowerAdjustmentCapability::Id:
/* PA - PowerAdjustment */
if (!HasFeature(Feature::kPowerAdjustment))
{
return CHIP_IM_GLOBAL_STATUS(UnsupportedAttribute);
}
return aEncoder.Encode(mDelegate.GetPowerAdjustmentCapability());
case Forecast::Id:
/* PFR | SFR - Power Forecast Reporting or State Forecast Reporting */
if (!HasFeature(Feature::kPowerForecastReporting) && !HasFeature(Feature::kStateForecastReporting))
{
return CHIP_IM_GLOBAL_STATUS(UnsupportedAttribute);
}
return aEncoder.Encode(mDelegate.GetForecast());
case OptOutState::Id:
/* PA | STA | PAU | FA | CON */
if (!HasFeature(Feature::kPowerAdjustment) && !HasFeature(Feature::kStartTimeAdjustment) &&
!HasFeature(Feature::kPausable) && !HasFeature(Feature::kForecastAdjustment) &&
!HasFeature(Feature::kConstraintBasedAdjustment))
{
return CHIP_IM_GLOBAL_STATUS(UnsupportedAttribute);
}
return aEncoder.Encode(mDelegate.GetOptOutState());
/* FeatureMap - is held locally */
case FeatureMap::Id:
return aEncoder.Encode(mFeature);
}
/* Allow all other unhandled attributes to fall through to Ember */
return CHIP_NO_ERROR;
}
// CommandHandlerInterface
CHIP_ERROR Instance::EnumerateAcceptedCommands(const ConcreteClusterPath & cluster,
DataModel::ListBuilder<DataModel::AcceptedCommandEntry> & builder)
{
using namespace Commands;
using Priv = chip::Access::Privilege;
ReturnErrorOnFailure(builder.EnsureAppendCapacity(8)); // Ensure we have capacity for all possible commands
if (HasFeature(Feature::kPowerAdjustment))
{
ReturnErrorOnFailure(builder.AppendElements({
{ PowerAdjustRequest::Id, {}, Priv::kOperate }, //
{ CancelPowerAdjustRequest::Id, {}, Priv::kOperate } //
}));
}
if (HasFeature(Feature::kStartTimeAdjustment))
{
ReturnErrorOnFailure(builder.Append({ StartTimeAdjustRequest::Id, {}, Priv::kOperate }));
}
if (HasFeature(Feature::kPausable))
{
ReturnErrorOnFailure(builder.AppendElements({
{ PauseRequest::Id, {}, Priv::kOperate }, //
{ ResumeRequest::Id, {}, Priv::kOperate } //
}));
}
if (HasFeature(Feature::kForecastAdjustment))
{
ReturnErrorOnFailure(builder.Append({ ModifyForecastRequest::Id, {}, Priv::kOperate }));
}
if (HasFeature(Feature::kConstraintBasedAdjustment))
{
ReturnErrorOnFailure(builder.Append({ RequestConstraintBasedForecast::Id, {}, Priv::kOperate }));
}
if (HasFeature(Feature::kStartTimeAdjustment) || HasFeature(Feature::kForecastAdjustment) ||
HasFeature(Feature::kConstraintBasedAdjustment))
{
ReturnErrorOnFailure(builder.Append({ CancelRequest::Id, {}, Priv::kOperate }));
}
return CHIP_NO_ERROR;
}
void Instance::InvokeCommand(HandlerContext & handlerContext)
{
using namespace Commands;
switch (handlerContext.mRequestPath.mCommandId)
{
case PowerAdjustRequest::Id:
if (!HasFeature(Feature::kPowerAdjustment))
{
handlerContext.mCommandHandler.AddStatus(handlerContext.mRequestPath, Status::UnsupportedCommand);
}
else
{
HandleCommand<PowerAdjustRequest::DecodableType>(
handlerContext,
[this](HandlerContext & ctx, const auto & commandData) { HandlePowerAdjustRequest(ctx, commandData); });
}
return;
case CancelPowerAdjustRequest::Id:
if (!HasFeature(Feature::kPowerAdjustment))
{
handlerContext.mCommandHandler.AddStatus(handlerContext.mRequestPath, Status::UnsupportedCommand);
}
else
{
HandleCommand<CancelPowerAdjustRequest::DecodableType>(
handlerContext,
[this](HandlerContext & ctx, const auto & commandData) { HandleCancelPowerAdjustRequest(ctx, commandData); });
}
return;
case StartTimeAdjustRequest::Id:
if (!HasFeature(Feature::kStartTimeAdjustment))
{
handlerContext.mCommandHandler.AddStatus(handlerContext.mRequestPath, Status::UnsupportedCommand);
}
else
{
HandleCommand<StartTimeAdjustRequest::DecodableType>(
handlerContext,
[this](HandlerContext & ctx, const auto & commandData) { HandleStartTimeAdjustRequest(ctx, commandData); });
}
return;
case PauseRequest::Id:
if (!HasFeature(Feature::kPausable))
{
handlerContext.mCommandHandler.AddStatus(handlerContext.mRequestPath, Status::UnsupportedCommand);
}
else
{
HandleCommand<PauseRequest::DecodableType>(
handlerContext, [this](HandlerContext & ctx, const auto & commandData) { HandlePauseRequest(ctx, commandData); });
}
return;
case ResumeRequest::Id:
if (!HasFeature(Feature::kPausable))
{
handlerContext.mCommandHandler.AddStatus(handlerContext.mRequestPath, Status::UnsupportedCommand);
}
else
{
HandleCommand<ResumeRequest::DecodableType>(
handlerContext, [this](HandlerContext & ctx, const auto & commandData) { HandleResumeRequest(ctx, commandData); });
}
return;
case ModifyForecastRequest::Id:
if (!HasFeature(Feature::kForecastAdjustment))
{
handlerContext.mCommandHandler.AddStatus(handlerContext.mRequestPath, Status::UnsupportedCommand);
}
else
{
HandleCommand<ModifyForecastRequest::DecodableType>(
handlerContext,
[this](HandlerContext & ctx, const auto & commandData) { HandleModifyForecastRequest(ctx, commandData); });
}
return;
case RequestConstraintBasedForecast::Id:
if (!HasFeature(Feature::kConstraintBasedAdjustment))
{
handlerContext.mCommandHandler.AddStatus(handlerContext.mRequestPath, Status::UnsupportedCommand);
}
else
{
HandleCommand<RequestConstraintBasedForecast::DecodableType>(
handlerContext,
[this](HandlerContext & ctx, const auto & commandData) { HandleRequestConstraintBasedForecast(ctx, commandData); });
}
return;
case CancelRequest::Id:
if (!HasFeature(Feature::kStartTimeAdjustment) && !HasFeature(Feature::kForecastAdjustment) &&
!HasFeature(Feature::kConstraintBasedAdjustment))
{
handlerContext.mCommandHandler.AddStatus(handlerContext.mRequestPath, Status::UnsupportedCommand);
}
else
{
HandleCommand<CancelRequest::DecodableType>(
handlerContext, [this](HandlerContext & ctx, const auto & commandData) { HandleCancelRequest(ctx, commandData); });
}
return;
}
}
Status Instance::CheckOptOutAllowsRequest(AdjustmentCauseEnum adjustmentCause)
{
OptOutStateEnum optOutState = mDelegate.GetOptOutState();
if (adjustmentCause == AdjustmentCauseEnum::kUnknownEnumValue)
{
ChipLogError(Zcl, "DEM: adjustment cause is invalid (%d)", static_cast<int>(adjustmentCause));
return Status::InvalidValue;
}
switch (optOutState)
{
case OptOutStateEnum::kNoOptOut: /* User has NOT opted out so allow it */
ChipLogProgress(Zcl, "DEM: OptOutState = kNoOptOut");
return Status::Success;
case OptOutStateEnum::kLocalOptOut: /* User has opted out from Local only*/
ChipLogProgress(Zcl, "DEM: OptOutState = kLocalOptOut");
switch (adjustmentCause)
{
case AdjustmentCauseEnum::kGridOptimization:
return Status::Success;
case AdjustmentCauseEnum::kLocalOptimization:
default:
return Status::ConstraintError;
}
case OptOutStateEnum::kGridOptOut: /* User has opted out from Grid only */
ChipLogProgress(Zcl, "DEM: OptOutState = kGridOptOut");
switch (adjustmentCause)
{
case AdjustmentCauseEnum::kLocalOptimization:
return Status::Success;
case AdjustmentCauseEnum::kGridOptimization:
default:
return Status::ConstraintError;
}
case OptOutStateEnum::kOptOut: /* User has opted out from both local and grid */
ChipLogProgress(Zcl, "DEM: OptOutState = kOptOut");
return Status::ConstraintError;
default:
ChipLogError(Zcl, "DEM: invalid optOutState %d", static_cast<int>(optOutState));
return Status::InvalidValue;
}
}
void Instance::HandlePowerAdjustRequest(HandlerContext & ctx, const Commands::PowerAdjustRequest::DecodableType & commandData)
{
bool validArgs = false;
int64_t power = commandData.power;
uint32_t durationSec = commandData.duration;
AdjustmentCauseEnum adjustmentCause = commandData.cause;
// Notify the appliance if the appliance hardware cannot be adjusted, then return Failure
if (!HasFeature(DeviceEnergyManagement::Feature::kPowerAdjustment))
{
ChipLogError(Zcl, "PowerAdjust not supported");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::Failure);
return;
}
Status status = CheckOptOutAllowsRequest(adjustmentCause);
if (status != Status::Success)
{
ChipLogError(Zcl, "DEM: PowerAdjustRequest command rejected");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, status);
return;
}
DataModel::Nullable<Structs::PowerAdjustCapabilityStruct::Type> powerAdjustmentCapabilityStruct =
mDelegate.GetPowerAdjustmentCapability();
if (powerAdjustmentCapabilityStruct.IsNull())
{
ChipLogError(Zcl, "DEM: powerAdjustmentCapabilityStruct IsNull");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::ConstraintError);
return;
}
if (powerAdjustmentCapabilityStruct.Value().powerAdjustCapability.IsNull())
{
ChipLogError(Zcl, "DEM: powerAdjustmentCapabilityStruct.powerAdjustCapability IsNull");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::ConstraintError);
return;
}
/* PowerAdjustmentCapability is a list - so iterate through checking if the command is within one of the offers */
for (auto pas : powerAdjustmentCapabilityStruct.Value().powerAdjustCapability.Value())
{
if ((power >= pas.minPower) && (durationSec >= pas.minDuration) && (power <= pas.maxPower) &&
(durationSec <= pas.maxDuration))
{
ChipLogProgress(Zcl, "DEM: Good PowerAdjustment args");
validArgs = true;
break;
}
}
if (!validArgs)
{
ChipLogError(Zcl, "DEM: invalid request range");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::ConstraintError);
return;
}
ChipLogProgress(Zcl, "DEM: Good PowerAdjustRequest() args.");
status = mDelegate.PowerAdjustRequest(power, durationSec, adjustmentCause);
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, status);
if (status != Status::Success)
{
ChipLogError(Zcl, "DEM: Failed to PowerAdjustRequest() args.");
}
}
void Instance::HandleCancelPowerAdjustRequest(HandlerContext & ctx,
const Commands::CancelPowerAdjustRequest::DecodableType & commandData)
{
if (!HasFeature(DeviceEnergyManagement::Feature::kPowerAdjustment))
{
ChipLogError(Zcl, "PowerAdjust not supported");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::Failure);
return;
}
/* Check that the ESA state is PowerAdjustActive */
ESAStateEnum esaStatus = mDelegate.GetESAState();
if (ESAStateEnum::kPowerAdjustActive != esaStatus)
{
ChipLogError(Zcl, "DEM: kPowerAdjustActive != esaStatus");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::InvalidInState);
return;
}
Status status = mDelegate.CancelPowerAdjustRequest();
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, status);
if (status != Status::Success)
{
ChipLogError(Zcl, "DEM: Failed to CancelPowerAdjustRequest()");
return;
}
}
void Instance::HandleStartTimeAdjustRequest(HandlerContext & ctx,
const Commands::StartTimeAdjustRequest::DecodableType & commandData)
{
Status status;
uint32_t earliestStartTimeEpoch = 0;
uint32_t latestEndTimeEpoch = 0;
uint32_t duration;
uint32_t requestedStartTimeEpoch = commandData.requestedStartTime;
AdjustmentCauseEnum adjustmentCause = commandData.cause;
status = CheckOptOutAllowsRequest(adjustmentCause);
if (status != Status::Success)
{
ChipLogError(Zcl, "DEM: StartTimeAdjustRequest command rejected");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, status);
return;
}
DataModel::Nullable<Structs::ForecastStruct::Type> forecastNullable = mDelegate.GetForecast();
if (forecastNullable.IsNull())
{
ChipLogError(Zcl, "DEM: Forecast is Null");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::Failure);
return;
}
/* Temporary variable to save calling .Value() on forecastNullable */
auto & forecast = forecastNullable.Value();
/**
* If the RequestedStartTime value resulted in a time shift which is
* outside the time constraints of EarliestStartTime and
* LatestEndTime, then the command SHALL be rejected with CONSTRAINT_ERROR;
* in other failure scenarios the command SHALL be rejected with FAILURE
*/
/* earliestStartTime is optional based on the StartTimeAdjust (STA) feature AND is nullable */
if (!(forecast.earliestStartTime.HasValue()) || !(forecast.latestEndTime.HasValue()))
{
/* These should have values, since this command requires STA feature and these are mandatory for that */
ChipLogError(Zcl, "DEM: EarliestStartTime / LatestEndTime do not have values");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::Failure);
return;
}
/* Temporary variable to save keep calling .Value() on the Optional element */
DataModel::Nullable<uint32_t> & earliestStartTimeNullable = forecast.earliestStartTime.Value();
/* Latest End Time is optional & cannot be null - unlike earliestStartTime! */
latestEndTimeEpoch = forecast.latestEndTime.Value();
if (earliestStartTimeNullable.IsNull())
{
System::Clock::Milliseconds64 cTMs;
CHIP_ERROR err = System::SystemClock().GetClock_RealTimeMS(cTMs);
if (err != CHIP_NO_ERROR)
{
ChipLogError(Zcl, "DEM: Unable to get current time - err:%" CHIP_ERROR_FORMAT, err.Format());
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::Failure);
return;
}
auto unixEpoch = std::chrono::duration_cast<System::Clock::Seconds32>(cTMs).count();
uint32_t chipEpoch = 0;
if (!UnixEpochToChipEpochTime(unixEpoch, chipEpoch))
{
ChipLogError(Zcl, "DEM: unable to convert Unix Epoch time to Matter Epoch Time");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::Failure);
return;
}
/* Null means - We can start immediately */
earliestStartTimeEpoch = chipEpoch; /* NOW */
}
else
{
earliestStartTimeEpoch = earliestStartTimeNullable.Value();
}
duration = forecast.endTime - forecast.startTime; // the current entire forecast duration
if (requestedStartTimeEpoch < earliestStartTimeEpoch)
{
ChipLogError(Zcl, "DEM: Bad requestedStartTime %ld, earlier than earliestStartTime %ld.",
static_cast<long unsigned int>(requestedStartTimeEpoch),
static_cast<long unsigned int>(earliestStartTimeEpoch));
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::ConstraintError);
return;
}
if ((requestedStartTimeEpoch + duration) > latestEndTimeEpoch)
{
ChipLogError(Zcl, "DEM: Bad requestedStartTimeEpoch + duration %ld, later than latestEndTime %ld.",
static_cast<long unsigned int>(requestedStartTimeEpoch + duration),
static_cast<long unsigned int>(latestEndTimeEpoch));
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::ConstraintError);
return;
}
ChipLogProgress(Zcl, "DEM: Good requestedStartTimeEpoch %ld.", static_cast<long unsigned int>(requestedStartTimeEpoch));
status = mDelegate.StartTimeAdjustRequest(requestedStartTimeEpoch, adjustmentCause);
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, status);
if (status != Status::Success)
{
ChipLogError(Zcl, "DEM: StartTimeAdjustRequest(%ld) FAILURE", static_cast<long unsigned int>(requestedStartTimeEpoch));
return;
}
}
void Instance::HandlePauseRequest(HandlerContext & ctx, const Commands::PauseRequest::DecodableType & commandData)
{
Status status = Status::Success;
CHIP_ERROR err = CHIP_NO_ERROR;
DataModel::Nullable<Structs::ForecastStruct::Type> forecast = mDelegate.GetForecast();
if (!HasFeature(DeviceEnergyManagement::Feature::kPausable))
{
ChipLogError(AppServer, "Pause not supported");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::Failure);
return;
}
uint32_t duration = commandData.duration;
AdjustmentCauseEnum adjustmentCause = commandData.cause;
status = CheckOptOutAllowsRequest(adjustmentCause);
if (status != Status::Success)
{
ChipLogError(Zcl, "DEM: PauseRequest command rejected");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, status);
return;
}
if (forecast.IsNull())
{
ChipLogError(Zcl, "DEM: Forecast is Null");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::Failure);
return;
}
/* value SHALL be between the MinPauseDuration and MaxPauseDuration indicated in the
ActiveSlotNumber index in the Slots list in the Forecast.
*/
uint16_t activeSlotNumber;
if (forecast.Value().activeSlotNumber.IsNull())
{
ChipLogError(Zcl, "DEM: activeSlotNumber Is Null");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::Failure);
return;
}
activeSlotNumber = forecast.Value().activeSlotNumber.Value();
if (activeSlotNumber >= forecast.Value().slots.size())
{
ChipLogError(Zcl, "DEM: Bad activeSlotNumber %d , size()=%d.", activeSlotNumber,
static_cast<int>(forecast.Value().slots.size()));
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::Failure);
return;
}
/* We expect that there should be a slotIsPausable entry (but it is optional) */
if (!forecast.Value().slots[activeSlotNumber].slotIsPausable.HasValue())
{
ChipLogError(Zcl, "DEM: activeSlotNumber %d does not include slotIsPausable.", activeSlotNumber);
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::Failure);
return;
}
if (!forecast.Value().slots[activeSlotNumber].minPauseDuration.HasValue())
{
ChipLogError(Zcl, "DEM: activeSlotNumber %d does not include minPauseDuration.", activeSlotNumber);
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::Failure);
return;
}
if (!forecast.Value().slots[activeSlotNumber].maxPauseDuration.HasValue())
{
ChipLogError(Zcl, "DEM: activeSlotNumber %d does not include minPauseDuration.", activeSlotNumber);
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::Failure);
return;
}
if (!forecast.Value().slots[activeSlotNumber].slotIsPausable.Value())
{
ChipLogError(Zcl, "DEM: activeSlotNumber %d is NOT pausable.", activeSlotNumber);
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::Failure);
return;
}
if ((duration < forecast.Value().slots[activeSlotNumber].minPauseDuration.Value()) ||
(duration > forecast.Value().slots[activeSlotNumber].maxPauseDuration.Value()))
{
ChipLogError(Zcl, "DEM: out of range pause duration %ld", static_cast<long unsigned int>(duration));
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::ConstraintError);
return;
}
err = mDelegate.SetESAState(ESAStateEnum::kPaused);
if (CHIP_NO_ERROR != err)
{
ChipLogError(Zcl, "DEM: SetESAState(paused) FAILURE");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::Failure);
return;
}
status = mDelegate.PauseRequest(duration, adjustmentCause);
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, status);
if (status != Status::Success)
{
ChipLogError(Zcl, "DEM: PauseRequest(%ld) FAILURE", static_cast<long unsigned int>(duration));
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, status);
return;
}
}
void Instance::HandleResumeRequest(HandlerContext & ctx, const Commands::ResumeRequest::DecodableType & commandData)
{
if (!HasFeature(DeviceEnergyManagement::Feature::kPausable))
{
ChipLogError(AppServer, "Pause not supported");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::Failure);
return;
}
if (ESAStateEnum::kPaused != mDelegate.GetESAState())
{
ChipLogError(Zcl, "DEM: ESAState not Paused.");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::InvalidInState);
return;
}
Status status = mDelegate.ResumeRequest();
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, status);
if (status != Status::Success)
{
ChipLogError(Zcl, "DEM: ResumeRequest FAILURE");
return;
}
}
void Instance::HandleModifyForecastRequest(HandlerContext & ctx, const Commands::ModifyForecastRequest::DecodableType & commandData)
{
if (!HasFeature(DeviceEnergyManagement::Feature::kForecastAdjustment))
{
ChipLogError(Zcl, "ModifyForecast not supported");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::Failure);
return;
}
Status status;
DataModel::Nullable<Structs::ForecastStruct::Type> forecast;
uint32_t forecastID = commandData.forecastID;
DataModel::DecodableList<Structs::SlotAdjustmentStruct::Type> slotAdjustments = commandData.slotAdjustments;
AdjustmentCauseEnum adjustmentCause = commandData.cause;
status = CheckOptOutAllowsRequest(adjustmentCause);
if (status != Status::Success)
{
ChipLogError(Zcl, "DEM: ModifyForecastRequest command rejected");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, status);
return;
}
forecast = mDelegate.GetForecast();
if (forecast.IsNull())
{
ChipLogError(Zcl, "DEM: Forecast is Null");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::Failure);
return;
}
// Check the various values in the slot structures
auto iterator = slotAdjustments.begin();
while (iterator.Next())
{
const Structs::SlotAdjustmentStruct::Type & slotAdjustment = iterator.GetValue();
// Check for an invalid slotIndex
if (slotAdjustment.slotIndex >= forecast.Value().slots.size())
{
ChipLogError(Zcl, "DEM: Bad slot index %d", slotAdjustment.slotIndex);
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::Failure);
return;
}
// Check to see if trying to modify a slot which has already been run
if (!forecast.Value().activeSlotNumber.IsNull() && slotAdjustment.slotIndex < forecast.Value().activeSlotNumber.Value())
{
ChipLogError(Zcl, "DEM: Modifying already run slot index %d", slotAdjustment.slotIndex);
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::ConstraintError);
return;
}
const Structs::SlotStruct::Type & slot = forecast.Value().slots[slotAdjustment.slotIndex];
// NominalPower is only relevant if PFR is supported
if (HasFeature(Feature::kPowerForecastReporting))
{
if (!slotAdjustment.nominalPower.HasValue() || !slot.minPowerAdjustment.HasValue() ||
!slot.maxPowerAdjustment.HasValue() || slotAdjustment.nominalPower.Value() < slot.minPowerAdjustment.Value() ||
slotAdjustment.nominalPower.Value() > slot.maxPowerAdjustment.Value())
{
ChipLogError(Zcl, "DEM: Bad nominalPower");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::ConstraintError);
return;
}
}
if (!slot.minDurationAdjustment.HasValue() || !slot.maxDurationAdjustment.HasValue() ||
slotAdjustment.duration < slot.minDurationAdjustment.Value() ||
slotAdjustment.duration > slot.maxDurationAdjustment.Value())
{
ChipLogError(Zcl, "DEM: Bad min/max duration");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::ConstraintError);
return;
}
}
if (iterator.GetStatus() != CHIP_NO_ERROR)
{
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::InvalidCommand);
return;
}
status = mDelegate.ModifyForecastRequest(forecastID, slotAdjustments, adjustmentCause);
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, status);
if (status != Status::Success)
{
ChipLogError(Zcl, "DEM: ModifyForecastRequest FAILURE");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::Failure);
return;
}
}
void Instance::HandleRequestConstraintBasedForecast(HandlerContext & ctx,
const Commands::RequestConstraintBasedForecast::DecodableType & commandData)
{
if (!HasFeature(DeviceEnergyManagement::Feature::kConstraintBasedAdjustment))
{
ChipLogError(AppServer, "RequestConstraintBasedForecast CON not supported");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::Failure);
return;
}
Status status = Status::Success;
DataModel::DecodableList<Structs::ConstraintsStruct::DecodableType> constraints = commandData.constraints;
AdjustmentCauseEnum adjustmentCause = commandData.cause;
status = CheckOptOutAllowsRequest(adjustmentCause);
if (status != Status::Success)
{
ChipLogError(Zcl, "DEM: RequestConstraintBasedForecast command rejected");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, status);
return;
}
uint32_t currentUtcTime = 0;
status = GetMatterEpochTimeFromUnixTime(currentUtcTime);
if (status != Status::Success)
{
ChipLogError(Zcl, "DEM: Failed to get UTC time");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, status);
return;
}
// Check for invalid power levels and whether the constraint time/duration is in the past
{
auto iterator = constraints.begin();
if (iterator.Next())
{
const Structs::ConstraintsStruct::DecodableType & constraint = iterator.GetValue();
// Check to see if this constraint is in the past
if (constraint.startTime < currentUtcTime)
{
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::ConstraintError);
return;
}
if (HasFeature(Feature::kPowerForecastReporting))
{
if (!constraint.nominalPower.HasValue())
{
ChipLogError(Zcl, "DEM: RequestConstraintBasedForecast no nominalPower");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::InvalidCommand);
return;
}
if (constraint.nominalPower.Value() < mDelegate.GetAbsMinPower() ||
constraint.nominalPower.Value() > mDelegate.GetAbsMaxPower())
{
ChipLogError(Zcl,
"DEM: RequestConstraintBasedForecast nominalPower " ChipLogFormatX64
" out of range [" ChipLogFormatX64 ", " ChipLogFormatX64 "]",
ChipLogValueX64(constraint.nominalPower.Value()), ChipLogValueX64(mDelegate.GetAbsMinPower()),
ChipLogValueX64(mDelegate.GetAbsMaxPower()));
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::ConstraintError);
return;
}
if (!constraint.maximumEnergy.HasValue())
{
ChipLogError(Zcl, "DEM: RequestConstraintBasedForecast no value for maximumEnergy");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::InvalidCommand);
return;
}
}
if (HasFeature(Feature::kStateForecastReporting))
{
if (!constraint.loadControl.HasValue())
{
ChipLogError(Zcl, "DEM: RequestConstraintBasedForecast no loadControl");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::InvalidCommand);
return;
}
if (constraint.loadControl.Value() < -100 || constraint.loadControl.Value() > 100)
{
ChipLogError(Zcl, "DEM: RequestConstraintBasedForecast bad loadControl %d", constraint.loadControl.Value());
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::ConstraintError);
return;
}
}
}
if (iterator.GetStatus() != CHIP_NO_ERROR)
{
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::InvalidCommand);
return;
}
}
// Check for overlappping elements
{
auto iterator = constraints.begin();
if (iterator.Next())
{
// Get the first constraint
Structs::ConstraintsStruct::DecodableType prevConstraint = iterator.GetValue();
// Start comparing next vs prev constraints
while (iterator.Next())
{
const Structs::ConstraintsStruct::DecodableType & constraint = iterator.GetValue();
if (constraint.startTime < prevConstraint.startTime ||
prevConstraint.startTime + prevConstraint.duration >= constraint.startTime)
{
ChipLogError(Zcl, "DEM: RequestConstraintBasedForecast overlapping constraint times");
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::ConstraintError);
return;
}
prevConstraint = constraint;
}
}
if (iterator.GetStatus() != CHIP_NO_ERROR)
{
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, Status::InvalidCommand);
return;
}
}
status = mDelegate.RequestConstraintBasedForecast(constraints, adjustmentCause);
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, status);
if (status != Status::Success)
{
ChipLogError(Zcl, "DEM: RequestConstraintBasedForecast FAILURE");
return;
}
}
void Instance::HandleCancelRequest(HandlerContext & ctx, const Commands::CancelRequest::DecodableType & commandData)
{
Status status = Status::Failure;
DataModel::Nullable<Structs::ForecastStruct::Type> forecast = mDelegate.GetForecast();
if (forecast.IsNull())
{
ChipLogDetail(AppServer, "Cancelling on a Null forecast!");
status = Status::Failure;
}
else if (forecast.Value().forecastUpdateReason == ForecastUpdateReasonEnum::kInternalOptimization)
{
ChipLogDetail(AppServer, "Bad Cancel when ESA ForecastUpdateReason was already Internal Optimization!");
status = Status::InvalidInState;
}
else
{
status = mDelegate.CancelRequest();
}
ctx.mCommandHandler.AddStatus(ctx.mRequestPath, status);
}
Status Instance::GetMatterEpochTimeFromUnixTime(uint32_t & currentUtcTime) const
{
currentUtcTime = 0;
System::Clock::Milliseconds64 cTMs;
CHIP_ERROR err = System::SystemClock().GetClock_RealTimeMS(cTMs);
if (err != CHIP_NO_ERROR)
{
ChipLogError(Zcl, "DEM: Unable to get current time - err:%" CHIP_ERROR_FORMAT, err.Format());
return Status::Failure;
}
auto unixEpoch = std::chrono::duration_cast<System::Clock::Seconds32>(cTMs).count();
if (!UnixEpochToChipEpochTime(unixEpoch, currentUtcTime))
{
ChipLogError(Zcl, "DEM: unable to convert Unix Epoch time to Matter Epoch Time");
return Status::Failure;
}
return Status::Success;
}
} // namespace DeviceEnergyManagement
} // namespace Clusters
} // namespace app
} // namespace chip
void MatterDeviceEnergyManagementPluginServerInitCallback() {}