-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
93 lines (73 loc) · 3.42 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#Define the N-BEATS, Nhits and Autoformer Architecture
import torch.nn as nn
from pytorch_forecasting.models.nbeats import NBeats
from pytorch_forecasting.models.nhits import NHiTS
from transformers import AutoformerModel, AutoformerConfig
from pytorch_forecasting.metrics.point import MAE, MAPE, SMAPE, MASE, RMSE
import config
class NBEATS():
nbeats = NBEATS = NBeats.from_dataset(
dataset = train_dataset,
stack_types = ["generic", "generic", "generic"],
num_blocks = [3, 3, 3],
num_block_layers = [4, 4, 4],
widths = [512, 512, 512],
sharing = False,
expansion_coefficient_lengths = [32, 32, 32],
prediction_length = max_prediction_length,
context_length = max_input_length,
reduce_on_plateau_patience = 10,
loss = MASE()
)
NHITS = NHiTS(
output_size = config.HORIZON,
static_hidden_size = ['512'],
loss = MAE(),
logging_metrics = nn.ModuleList([SMAPE(), MAE(), RMSE(), MAPE(), MASE()]),
downsample_frequencies = [1, 1, 1],
pooling_sizes = [1, 1, 1]
)
configuration = AutoformerConfig(
prediction_length = config.HORIZON,
loss = 'mae',
input_size = config.WINDOW_SIZE,
)
autoformer = AutoformerModel(configuration)
import torch
from torch.nn import LSTM, Linear, BatchNorm1d, Dropout
from typing import Sequence
from torch.autograd import Variable
class LSTMModel(torch.nn.Module):
def __init__(self, input_size : int, hidden_size : int, num_layers : int, output_size : int, dropout = 0.1):
super().__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.output_size = output_size
self.fc_input = Linear(input_size, hidden_size)
self.lstm = LSTM(hidden_size*4, 512, num_layers, batch_first=True)
self.fc_output = Linear(512, output_size)
self.bn = BatchNorm1d(hidden_size)
self.dropout = Dropout(dropout)
def forward(self, x: torch.Tensor):
batch_size = x.size(0)
# Initialize hidden state with zeros
h_0 = Variable(torch.zeros(self.num_layers, batch_size, self.lstm.hidden_size).to(x.device))
c_0 = Variable(torch.zeros(self.num_layers, batch_size, self.lstm.hidden_size).to(x.device))
# Process each feature vector independently
processed_features = []
for i in range(x.size(1)): # Iterate over the 4 feature vectors
feature = x[:, i, :] # Shape: [batch_size, sequence_length]
feature = self.fc_input(feature) # Shape: [batch_size, hidden_size]
feature = self.bn(feature) # Apply BatchNorm1d to [batch_size, hidden_size]
feature = self.dropout(feature) # Apply dropout
processed_features.append(feature)
# Stack processed features and reshape to be compatible with LSTM input
x = torch.stack(processed_features, dim=1) # Shape: [batch_size, num_features, hidden_size]
x = x.view(batch_size, -1, self.hidden_size * 4) # Combine features into the input size for LSTM
# LSTM expects input of shape [batch_size, seq_len, input_size]
x, _ = self.lstm(x, (h_0, c_0))
# Pass through the output layer
x = self.fc_output(x[:, -1, :]) # Use the last time step's output
return x
model = LSTMModel(input_size=config.max_input_length, hidden_size=128, num_layers=3, output_size=config.max_prediction_length)
model.to(device)