-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_video_trt.py
124 lines (95 loc) · 4.48 KB
/
run_video_trt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import argparse
import cv2
import numpy as np
import os
import torch
import torch.nn.functional as F
from torchvision.transforms import Compose
import time
import sys
sys.path.append("Depth_Anythingv2_TensorRT_python/models")
from depth_anything.dpt import DepthAnything
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
from Depth_Anythingv2_TensorRT_python.models.dpt import Dpt
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--video_path', type=str)
parser.add_argument('--outdir', type=str, default='./vis_video_depth')
parser.add_argument(
"--engine", type=str, required=True, help="Path to the TensorRT engine"
)
args = parser.parse_args()
margin_width = 50
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_{}14'.format(args.encoder)).to(DEVICE).eval()
# total_params = sum(param.numel() for param in depth_anything.parameters())
# print('Total parameters: {:.2f}M'.format(total_params / 1e6))
model = Dpt(args)
# transform = Compose([
# Resize(
# width=518,
# height=518,
# resize_target=False,
# keep_aspect_ratio=True,
# ensure_multiple_of=14,
# resize_method='lower_bound',
# image_interpolation_method=cv2.INTER_CUBIC,
# ),
# NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
# PrepareForNet(),
# ])
if os.path.isfile(args.video_path):
if args.video_path.endswith('txt'):
with open(args.video_path, 'r') as f:
lines = f.read().splitlines()
else:
filenames = [args.video_path]
else:
filenames = os.listdir(args.video_path)
filenames = [os.path.join(args.video_path, filename) for filename in filenames if not filename.startswith('.')]
filenames.sort()
os.makedirs(args.outdir, exist_ok=True)
for k, filename in enumerate(filenames):
print('Progress {:}/{:},'.format(k+1, len(filenames)), 'Processing', filename)
raw_video = cv2.VideoCapture(filename)
frame_width, frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS))
output_width = frame_width * 2 + margin_width
filename = os.path.basename(filename)
output_path = os.path.join(args.outdir, filename[:filename.rfind('.')] + '_video_depth.mp4')
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (output_width, frame_height))
frame_id = 0
total_inf_time = 0
while raw_video.isOpened():
ret, raw_frame = raw_video.read()
if not ret:
break
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB)
# frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2RGB) / 255.0
# frame = transform({'image': frame})['image']
# frame = torch.from_numpy(frame).unsqueeze(0).to(DEVICE)
pro_image, shape_info = model.preprocess(frame)
if frame_id == 0:
print(f'frame: {pro_image.shape}')
start = time.time()
with torch.no_grad():
# depth = depth_anything(frame)
depth = model.inference(pro_image)
end = time.time()
if frame_id == 0:
print(f'depth: {depth.shape}')
inf_time = end - start
# print(f"Inf time: {inf_time:.5f} sec")
total_inf_time += inf_time
depth = model.postprocess(shape_info, depth)
# depth = F.interpolate(depth[None], (frame_height, frame_width), mode='bilinear', align_corners=False)[0, 0]
# depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth_int = depth.astype(np.uint8)
depth_color = cv2.applyColorMap(depth_int, cv2.COLORMAP_INFERNO)
split_region = np.ones((frame_height, margin_width, 3), dtype=np.uint8) * 255
combined_frame = cv2.hconcat([raw_frame, split_region, depth_color])
out.write(combined_frame)
frame_id += 1
print(f'Avg inf time: {total_inf_time / frame_id}')
raw_video.release()
out.release()