-
Notifications
You must be signed in to change notification settings - Fork 227
/
Copy pathclassification.lua
105 lines (84 loc) · 3.15 KB
/
classification.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
require 'torch'
require 'nn'
require 'lfs'
require 'image'
require 'loadcaffe'
utils = require 'misc.utils'
cmd = torch.CmdLine()
cmd:text('Options')
-- Model parameters
cmd:option('-proto_file', 'models/VGG_ILSVRC_16_layers_deploy.prototxt')
cmd:option('-model_file', 'models/VGG_ILSVRC_16_layers.caffemodel')
cmd:option('-input_sz', 224, 'Input image dimensions (use 227 for AlexNet)')
cmd:option('-backend', 'nn')
-- Grad-CAM parameters
cmd:option('-layer_name', 'relu5_3', 'Layer to use for Grad-CAM (use relu5_4 for VGG-19 and relu5 for AlexNet)')
cmd:option('-input_image_path', 'images/cat_dog.jpg', 'Input image path')
cmd:option('-output_image_name', '', 'Output image name')
cmd:option('-label',-1, 'Class label to generate grad-CAM for (-1 = use predicted class, 283 = Tiger cat, 243 = Boxer)')
cmd:option('-save_as_heatmap', 1, 'Whether to save heatmap or raw Grad-CAM. 1 = save heatmap, 0 = save raw Grad-CAM.')
-- Miscellaneous
cmd:option('-seed', 123, 'Torch manual random number generator seed')
cmd:option('-gpuid', -1, '0-indexed id of GPU to use. -1 = CPU')
cmd:option('-out_path', 'output/', 'Output path')
-- Parse command-line parameters
opt = cmd:parse(arg or {})
print(opt)
torch.manualSeed(opt.seed)
torch.setdefaulttensortype('torch.FloatTensor')
lfs.mkdir(opt.out_path)
if opt.gpuid >= 0 then
require 'cunn'
require 'cutorch'
cutorch.setDevice(opt.gpuid + 1)
cutorch.manualSeed(opt.seed)
end
-- Load CNN
local cnn = loadcaffe.load(opt.proto_file, opt.model_file, opt.backend)
-- Set to evaluate and remove softmax layer
cnn:evaluate()
cnn:remove()
-- Clone & replace ReLUs for Guided Backprop
local cnn_gb = cnn:clone()
cnn_gb:replace(utils.guidedbackprop)
-- Load image
local img = utils.preprocess(opt.input_image_path, opt.input_sz, opt.input_sz)
-- Transfer to GPU
if opt.gpuid >= 0 then
cnn:cuda()
cnn_gb:cuda()
img = img:cuda()
else
img = img:float()
end
-- Forward pass
local output = cnn:forward(img)
local output_gb = cnn_gb:forward(img)
-- Take argmax
local score, pred_label = torch.max(output,1)
if opt.label == -1 then
print("No label provided, using predicted label ", pred_label)
opt.label = pred_label[1]
end
-- Set gradInput
local doutput = utils.create_grad_input(cnn.modules[#cnn.modules], opt.label)
-- Grad-CAM
local gcam = utils.grad_cam(cnn, opt.layer_name, doutput)
gcam = image.scale(gcam:float(), opt.input_sz, opt.input_sz)
local hm = utils.to_heatmap(gcam)
if opt.output_image_name == "" then
opt.output_image_name = opt.label
end
if opt.save_as_heatmap == 1 then
image.save(opt.out_path .. 'classify_gcam_hm_' .. opt.output_image_name .. '.png', image.toDisplayTensor(hm))
else
image.save(opt.out_path .. 'classify_gcam_' .. opt.output_image_name .. '.png', image.toDisplayTensor(gcam))
end
-- Guided Backprop
local gb_viz = cnn_gb:backward(img, doutput)
-- BGR to RGB
gb_viz = gb_viz:index(1, torch.LongTensor{3, 2, 1})
image.save(opt.out_path .. 'classify_gb_' .. opt.output_image_name .. '.png', image.toDisplayTensor(gb_viz))
-- Guided Grad-CAM
local gb_gcam = gb_viz:float():cmul(gcam:expandAs(gb_viz))
image.save(opt.out_path .. 'classify_gb_gcam_' .. opt.output_image_name .. '.png', image.toDisplayTensor(gb_gcam))