-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune_t5_experiment.sh
executable file
·70 lines (54 loc) · 1.73 KB
/
finetune_t5_experiment.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#!/bin/bash
set -ve
TRAIN_BATCH_SIZE=16
TEST_BATCH_SIZE=8
MAX_LEN=120
BEAM_SIZE=15
MODEL=pretrained_models/t5
DATASET=wordnet
LR=3e-4
DATA_DIR=data/$DATASET
WARMUPS=2000
CONTRASTIVE_RATIO=0.8
POOLING_METHOD=max #! average、max、None
SHUFFLE=yes
CUDA=1
VAL_CHECK_INTER=10
LOG_DIR=logs
mkdir -p $T5_OUTPUT_DIR
mkdir -p $LOG_DIR
export CUDA_VISIBLE_DEVICES=$CUDA
train_pipeline(){
python -u src/finetune.py --model_name_or_path $MODEL \
--use_warmup 1 \
--data_dir $DATA_DIR --learning_rate $LR \
--early_stopping_patience $1 --train_batch_size $TRAIN_BATCH_SIZE \
--eval_batch_size $TEST_BATCH_SIZE --output_dir $2 \
--max_source_length $MAX_LEN --max_target_length $MAX_LEN \
--num_train_epochs $3 --gpus 1 --do_train --do_predict \
--task $4 \
--pooling_method $POOLING_METHOD \
--weight_decay 0.001 \
--warmup_steps $WARMUPS \
--num_workers 10 \
--shuffle $SHUFFLE \
--contrastive_ratio $5 \
--test_dataset test 2>&1 | tee $LOG_DIR/$6-training.log
}
#! first stage
TASK=def-gen
NUM_EPOCHS_STAGE_ONE=50
EARLY_STOP_STAGE_ONE=10
T5_OUTPUT_DIR_STAGE_ONE=output/$DATASET-def-gen
CONTRASTIVE_RATIO_STAGE_ONE=0.0
STAGE=stage-one
train_pipeline "$EARLY_STOP_STAGE_ONE" "$T5_OUTPUT_DIR_STAGE_ONE" "$NUM_EPOCHS_STAGE_ONE" "$TASK" "$CONTRASTIVE_RATIO_STAGE_ONE" "$STAGE"
#! second stage
TASK=def-gen-with-contras
NUM_EPOCHS_STAGE_TWO=50
EARLY_STOP_STAGE_TWO=10
CKPT_PATH=$T5_OUTPUT_DIR_STAGE_ONE
T5_OUTPUT_DIR_STAGE_TWO=output/$DATASET-def-gen-with-contras
CONTRASTIVE_RATIO_STAGE_ONE=0.8
STAGE=stage-two
train_pipeline "$EARLY_STOP_STAGE_TWO" "$T5_OUTPUT_DIR_STAGE_TWO" "$NUM_EPOCHS_STAGE_TWO" "$TASK" "$CONTRASTIVE_RATIO_STAGE_TWO" "$STAGE"