-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenhancer.py
188 lines (154 loc) · 5.72 KB
/
enhancer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import logging
import os
import cv2
import numpy as np
import tensorflow as tf
class Enhancer:
def __init__(self, gpu=True):
self.gpu = gpu
self._files = []
self._model = None
self._locked = False
self._sess = None
self._graph = _Graph()
self._result = []
self._available = True
self.success = False
self.error_log = ''
self.model_available = lambda: self._sess is not None
if not gpu:
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
def _init_graph(self):
graph = tf.Graph()
with graph.as_default():
self._graph.image_ph = tf.placeholder(dtype=tf.float32, shape=(None, None, 3), name="ph")
self._graph.height = tf.placeholder(dtype=tf.int32)
self._graph.width = tf.placeholder(dtype=tf.int32)
input_image = tf.cast(self._graph.image_ph, dtype=tf.float32)
input_image = input_image / 127.5 - 1
with tf.gfile.GFile(self._model, 'rb') as model_file:
graph_def = tf.GraphDef()
graph_def.ParseFromString(model_file.read())
try:
self._graph.output_image = tf.import_graph_def(graph_def,
input_map={'input_image': input_image},
return_elements=['output_image:0'],
name='output')
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
self._sess = tf.Session(graph=graph, config=config)
except Exception as e:
try:
self._sess.close()
raise e
except Exception as e:
self._sess = None
raise e
def close(self):
self._sess.close()
self._lock()
def load_model(self, model_path):
self._model = model_path
self._init_graph()
self._unlock()
def add_files(self, file: dict): # for batch process
"""
:param file: {
'path' : str, where's the file.
'denoise' : bool, denoise before process.
'denoise_after' : bool, denoise after process.
}
:return:
self
"""
self._files.append(file)
def empty(self):
self._files = []
def is_available(self):
return self._available
def batch_process(self):
self._available = False
for file in self._files:
path = file['path']
save_path = file['save_path']
denoise = file['denoise']
denoise_after = file['denoise_after']
image = cv2.imread(path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
try:
h, w, _ = image.shape
if denoise:
image = cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 5, 5)
image = image[h % 4:, w % 4:, :]
h, w, _ = image.shape
[[[result_img]]] = self._sess.run([self._graph.output_image], feed_dict={
self._graph.image_ph: image,
self._graph.height: h,
self._graph.width: w
})
result_img = np.asarray(result_img)
if denoise_after:
result_img = cv2.fastNlMeansDenoisingColored(result_img, None, 10, 10, 5, 5)
result_img = cv2.cvtColor(result_img, cv2.COLOR_RGB2BGR)
cv2.imwrite(save_path, result_img)
self.success = True
except Exception as e:
print("Something went wrong!")
print(str(e))
self.success = False
self._available = True
def sample(self, image, denoise=False, denoise_after=False):
image = image[:,:,:3]
self._available = False
try:
h, w, _ = image.shape
if denoise:
image = cv2.fastNlMeansDenoisingColored(image, None, 5, 5, 7, 21)
h, w, _ = image.shape
[[[result_img]]] = self._sess.run([self._graph.output_image], feed_dict={
self._graph.image_ph: image,
self._graph.height: h,
self._graph.width: w
})
result_img = np.asarray(result_img)
if denoise_after:
result_img = cv2.fastNlMeansDenoisingColored(result_img, None, 10, 10, 5, 5)
self.error_log = ''
self.success = True
return result_img
except Exception as e:
logging.error("Something went during enhancing task :(")
logging.error("It should caused by TensorFlow.")
logging.error(str(e))
self.success = False
self.error_log = str(e)
return None
finally:
self._available = True
def _lock(self):
self._available = False
def _unlock(self):
self._available = True
class _Graph:
def __init__(self):
self.output_image = None
self.image_ph = None
self.height = None
self.width = None
def add_gaussian_noise(image, mean=0, std=0.001):
"""
添加高斯噪声
mean : 均值
var : 方差
"""
image = np.array(image / 255, dtype=float)
noise = np.random.normal(mean, std ** 0.5, image.shape)
print(np.mean(noise ** 2) - np.mean(noise) ** 2)
out = image + noise
if image.min() < 0:
low_clip = -1.
else:
low_clip = 0.
out = np.clip(out, low_clip, 1.0)
out = np.uint8(out * 255)
return out