@@ -42,6 +42,7 @@ def get_embeddings():
42
42
#using build-in HuggingFace instead
43
43
#from langchain.embeddings import HuggingFaceEmbeddings
44
44
#embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
45
+
45
46
from langchain .embeddings import OpenAIEmbeddings
46
47
embeddings = OpenAIEmbeddings (deployment = OPENAI_EMBEDDINGS_ENGINE , chunk_size = 1 )
47
48
else :
@@ -52,8 +53,19 @@ def get_embeddings():
52
53
53
54
def get_llm ():
54
55
if OPENAI_API_TYPE == "azure" :
56
+ openai .api_type = "azure"
57
+ openai .api_base = os .getenv ("OPENAI_API_BASE" )
58
+ openai .api_version = os .getenv ("OPENAI_API_VERSION" )
59
+ openai .api_key = os .getenv ("OPENAI_API_KEY" )
60
+ text_model_deployment = OPENAI_COMPLETIONS_ENGINE
55
61
from langchain .llms import AzureOpenAI
56
- llm = AzureOpenAI (deployment_name = OPENAI_COMPLETIONS_ENGINE )
62
+ llm = AzureOpenAI (deployment_name = text_model_deployment , model_kwargs = {
63
+ "api_key" : openai .api_key ,
64
+ "api_base" : openai .api_base ,
65
+ "api_type" : openai .api_type ,
66
+ "api_version" : openai .api_version ,
67
+ })
68
+ #llm_predictor = LLMPredictor(llm=llm)
57
69
else :
58
70
from langchain .llms import OpenAI
59
71
llm = OpenAI ()
@@ -83,7 +95,7 @@ def get_query_engine():
83
95
84
96
# load documents
85
97
documents = SimpleDirectoryReader (download_file_path ).load_data ()
86
- print ('Document ID:' , documents [0 ].doc_id , 'Document Hash:' , documents [ 0 ]. doc_hash )
98
+ print ('Document ID:' , documents [0 ].doc_id )
87
99
88
100
89
101
from llama_index .storage .storage_context import StorageContext
@@ -122,4 +134,4 @@ def get_query_engine():
122
134
except Exception as e :
123
135
response = "Error: %s" % str (e )
124
136
st .markdown (str (response ))
125
- print (str (response ))
137
+ # print(str(response))
0 commit comments