-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMatrixOperations.cpp
476 lines (418 loc) · 14.4 KB
/
MatrixOperations.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
#include<cstdio>
#include<iostream>
#include<iomanip>
#include <math.h>
#include "MatrixOperations.h"
using namespace std;
#define EPSILON 0.000000000001
#define WORD_SIZE_VEC 30
// Find the maximum number in a vector.
double findMaxNumberInVector(vector<double> vec) {
if (vec.size() == 0) {
cout<<"The given vector has no elements which can be max."<<endl;
return 0;
}
double m = vec[0];
for(int i = 1; i < vec.size();i++) {
if (EPSILON < vec[i] - m) m = vec[i];
}
return m;
}
// Find the minimum number in a vector.
double findMinNumberInVector(vector<double> vec) {
if (vec.size() == 0) {
cout<<"The given vector has no elements which can be min."<<endl;
return 0;
}
double m = vec[0];
for(int i = 1; i < vec.size();i++) {
if (EPSILON > vec[i] - m) m = vec[i];
}
return m;
}
// Checks the dimensions of the matrix and of the vector to see if they can be multiplied.
bool checkMatrixMultiplicationWithVector(vector<vector<double>> matrix, vector<double> vec) {
int n = matrix.size(); // number of lines
if (n == 0) return false;
int m = matrix[0].size(); // number of columns
int d = vec.size(); // number of elements in the array
if (m == d) return true;
return false;
}
// Multiplies the given matrix with the vector and returns a vector.
vector<double> matrixMultplicationWithVector(vector<vector<double>> matrix, vector<double> vec) {
vector<double> result;
if (!checkMatrixMultiplicationWithVector(matrix, vec)) {
cout<<"The matrix multiplication with the vector could not be computed. The 2 given inputs cannot be multiplied."<<endl;
exit(0);
}
int n = matrix.size(); // number of lines
int m = matrix[0].size(); // number of columns
int d = vec.size(); // number of elements in the array
double s = 0; // current sum
for (int i = 0; i < n; i++) {
s = 0;
for (int j = 0;j < m; j++) {
s = s + matrix[i][j] * vec[j];
}
result.push_back(s);
}
return result;
}
// Concatenate two vectors into a new vector. You first add vec1 and then add vec2.
vector<double> concatenateTwoVectors(vector<double> vec1, vector<double> vec2) {
vector<double> result;
for (int i = 0; i < vec1.size(); i++) {
result.push_back(vec1[i]);
}
for (int i = 0; i < vec2.size(); i++) {
result.push_back(vec2[i]);
}
return result;
}
// Apply the tanh function to every element in the given aray and return a vector with the results.
vector<double> applyTanhElementWise(vector<double> vec) {
vector<double> result;
for (int i = 0; i < vec.size(); i++) {
if (isnan(tanh(vec[i]))) {
printElementsOfVector(vec);
cout<<" Found nan"<<endl;
exit(0);
}
//cout<<tanh(vec[i])<<endl;
result.push_back(tanh((double)vec[i]));
}
return result;
}
// Perform inner product of the 2 vectors and return the result back.
double vectorInnerProduct(vector<double> vec1, vector<double> vec2) {
double result;
if (vec1.size() != vec2.size()) {
cout<<"The given vectors have different dimensions and could not perform inner product on them."<<endl;
exit(0);
}
for (int i = 0; i < vec1.size(); i++) {
result = result + vec1[i]*vec2[i];
}
return result;
}
// Returns a new matrix which is the input matrix transposed.
vector<vector<double>> getTransposeMatrix(vector<vector<double>> matrix) {
vector<vector<double>> result;
int numberOfLines = matrix.size();
int numberOfColumns = 0;
if (numberOfLines != 0) numberOfColumns = matrix[0].size();
// Transpose the first line, in order to obtain the lines of the transpose matrix in order
// to create the entry vectors for each line.
for(int i = 0; i < numberOfColumns; i++) {
vector<double> numberToInsert;
numberToInsert.push_back(matrix[0][i]);
result.push_back(numberToInsert);
}
// Transpose the rest of the matrix.
for(int i = 1; i < numberOfLines; i++) {
for(int j = 0; j < numberOfColumns; j++) {
result[j].push_back(matrix[i][j]);
}
}
return result;
}
// Checks if the given matrices have the same number of lines and columns. This is for the Hadamard Product.
bool checkIfTwoMatricesHaveTheSameDimesions(vector<vector<double>> matrix1, vector<vector<double>> matrix2) {
int l1 = matrix1.size();
int l2 = matrix2.size();
if (l1 != l2) return false;
if (l1 > 0) {
for(int i = 0; i < l1; i++) {
int c1 = matrix1[i].size();
int c2 = matrix2[i].size();
if (c1 != c2) return false;
}
}
return true;
}
// Returns a new matrix which is the Hadamard product of the 2 given matrices.
vector<vector<double>> getMatrixHadamardProduct(vector<vector<double>> matrix1, vector<vector<double>> matrix2) {
vector<vector<double>> result;
if (!checkIfTwoMatricesHaveTheSameDimesions(matrix1, matrix2)) {
cout<<"The 2 matrices don't have the same dimesions. Cannot obtain their Hadamard product."<<endl;
exit(0);
}
int numberOfColumns = matrix1[0].size();
int numberOfLines = matrix1.size();
// Multiply the first line, in order to obtain the lines of the transpose matrix in order
// to create the entry vectors for each line.
for(int i = 0; i < numberOfLines; i++) {
vector<double> numberToInsert;
for(int j = 0; j < numberOfColumns; j++) {
numberToInsert.push_back(matrix1[i][j] * matrix2[i][j]);
}
result.push_back(numberToInsert);
}
return result;
}
// Returns a new matrix which is the Hadamard product of the 2 given vectors.
vector<double> getVectorHadamardProduct(vector<double> vect1, vector<double> vect2) {
vector<double> result;
double numberToInsert;
for(int i = 0; i < vect1.size(); i++) {
numberToInsert = vect1[i] *vect2[i];
result.push_back(numberToInsert);
}
return result;
}
long long findPower(double x) {
long long prod = 1;
long long counter = 0;
if (x < 0) x = x *(-1);
while(x < 1) {
x *= 10;
prod *= 10;
counter++;
}
return counter;
}
// Compute the softmax of a vector container.
vector<double> softmax(vector<double> vec) {
double sum = 0;
double temp;
double maximum = findMaxNumberInVector(vec);
long long prod = 1;
long long aux = 0;
//cout<<vec[0]<<" "<<vec[1]<<endl;
for (int i = 0; i < vec.size(); i++) {
vec[i] = vec[i] - maximum;
sum = sum + exp(vec[i]);
}
if (sum - EPSILON == 0) {
cout<<"The sum computed for softmax is zero."<<endl;
exit(0);
}
vector<double> result;
for (int i = 0; i < vec.size(); i++) {
temp = exp(vec[i]) / sum;
//cout<<temp<<endl;
result.push_back(temp);
}
return result;
}
/**
* Substract, elemnt-wise 2 vector and return vector containing the result of this operation. This assumes
* that the 2 vectors have the same dimensions.
*/
vector<double> substractTwoVectors(vector<double> firstVector, vector<double> secondVector) {
vector<double> result;
if (firstVector.size() != secondVector.size()) {
cout<<"Couldn't subtract the 2 given vectors. They have different dimensions"<<endl;
exit(0);
}
double difference;
for (int i = 0; i < firstVector.size(); i++) {
difference = firstVector[i] - secondVector[i];
result.push_back(difference);
}
return result;
}
/**
* Add, elemnt-wise 2 vector and return vector containing the result of this operation. This assumes
* that the 2 vectors have the same dimensions.
*/
vector<double> addTwoVectors(vector<double> firstVector, vector<double> secondVector) {
vector<double> result;
if (firstVector.size() != secondVector.size()) {
cout<<"Couldn't add the 2 given vectors. They have different dimensions"<<endl;
exit(0);
}
double addition;
for (int i = 0; i < firstVector.size(); i++) {
addition = firstVector[i] + secondVector[i];
result.push_back(addition);
}
return result;
}
// Obtain the derivative of the tanh function using (tanh x)' = 1 - ((tanh x)^2) (entry-wise).
vector<double> getTanhDerivativeFunction(vector<double> vec) {
vector<double> result;
double aux;
double currentElement;
for (int i = 0; i < vec.size(); i++) {
currentElement = vec[i];
aux = 1 - (currentElement * currentElement);
result.push_back(aux);
}
return result;
}
// Create a vector containing d elements, all equal to 0.
vector<double> getZeros(int d) {
vector<double> result;
for (int i = 0; i < d; i++) {
result.push_back(0);
}
return result;
}
// Print the elements in a vector container.
void printElementsOfVector(vector<double> vec) {
for(int i = 0; i < vec.size(); i++) {
cout<<vec[i]<<" ; ";
}
cout<<endl;
}
// Print the elements in a vector container.
void printElementsOfVector(vector<double> vec, ofstream f) {
for(int i = 0; i < vec.size(); i++) {
f<<vec[i]<<" ; ";
}
f<<endl;
}
// Print the elements of a given matrix.
void printElementsOfMatrix(vector<vector<double>> matrix) {
for(int i = 0; i < matrix.size(); i++) {
for(int j = 0; j < matrix[0].size(); j++) {
cout<<" "<<matrix[i][j];
}
cout<<endl;
}
}
// Print the elements of a given matrix.
void printElementsOfMatrix(vector<vector<double>> matrix, ofstream f) {
for(int i = 0; i < matrix.size(); i++) {
for(int j = 0; j < matrix[0].size(); j++) {
f<<" "<<matrix[i][j];
}
f<<endl;
}
}
// Looks at the dimensions of the two matrices and checks if the dimensions are equal.
bool checkMatricesHaveSameDimenesions(vector<vector<double>> firstMatrice, vector<vector<double>> secondMatrice) {
int firstMatriceLines = firstMatrice.size();
int firstMatriceColumns = firstMatrice[0].size();
int secondMatriceLines = secondMatrice.size();
int secondMatriceColumns = secondMatrice[0].size();
if ((firstMatriceLines == secondMatriceLines) && (firstMatriceColumns == secondMatriceColumns)) return true;
return false;
}
/**
* Add, elemnt-wise 2 matrices and return a matrice containing the result of this operation. This assumes
* that the 2 matrices have the same dimensions.
*/
vector<vector<double>> addTwoMatrices(vector<vector<double>> firstMatrice, vector<vector<double>> secondMatrice) {
vector<vector<double>> result;
if (firstMatrice.size() != secondMatrice.size() || firstMatrice[0].size() != secondMatrice[0].size()) {
cout<< "The 2 given matrices cannot be added together because they don't have the same dimensions."<<endl;
exit(0);
}
for(int i = 0; i < firstMatrice.size(); i++) {
vector<double> temp;
for(int j = 0; j < firstMatrice[0].size(); j++) {
temp.push_back(firstMatrice[i][j] + secondMatrice[i][j]);
}
result.push_back(temp);
}
return result;
}
/**
* Subtract, elemnt-wise 2 matrices and return a matrice containing the result of this operation. This assumes
* that the 2 matrices have the same dimensions.
*/
vector<vector<double>> subtractTwoMatrices(vector<vector<double>> firstMatrice, vector<vector<double>> secondMatrice) {
vector<vector<double>> result;
if (firstMatrice.size() != secondMatrice.size() || firstMatrice[0].size() != secondMatrice[0].size()) {
cout<< "The 2 given matrices cannot be added together because they don't have the same dimensions."<<endl;
exit(0);
}
for(int i = 0; i < firstMatrice.size(); i++) {
vector<double> temp;
for(int j = 0; j < firstMatrice[0].size(); j++) {
temp.push_back(firstMatrice[i][j] - secondMatrice[i][j]);
}
result.push_back(temp);
}
return result;
}
// Multiply matrix by scalar.
vector<vector<double>> multiplyMatrixByScalar(vector<vector<double>> matrix, double scalar) {
vector<vector<double>> result;
for(int i = 0; i < matrix.size(); i++) {
vector<double> temp;
for(int j = 0; j < matrix[0].size(); j++) {
temp.push_back(matrix[i][j] * scalar);
}
result.push_back(temp);
}
return result;
}
// Transpose a row vector. Return a matrix representing the column vector.
vector<vector<double>> transposeRowVector(vector<double> vec) {
vector<vector<double>> result;
for(int i = 0; i < vec.size(); i++) {
vector<double> temp;
temp.push_back(vec[i]);
result.push_back(temp);
}
return result;
}
// Create a weight matrix containing only 0s of dimensions d x 2d.
vector<vector<double>> getZerosWeightMatrix(int d) {
vector<vector<double>> result;
for(int i = 0; i < d; i++) {
vector<double> temp;
for(int j = 0; j < 2*d; j++) {
temp.push_back(0);
}
result.push_back(temp);
}
return result;
}
// Matrix multiplication
vector<vector<double>> multiplyMatrices(vector<vector<double>> matrix, vector<double> vec) {
vector<vector<double>> result;
double s = 0; // current sum
int n = matrix.size();
for (int i = 0; i < n; i++) {
vector<double> temp;
for (int j = 0;j < vec.size(); j++) {
temp.push_back(matrix[i][0] * vec[j]);
}
result.push_back(temp);
}
return result;
}
// Craete an empty Sentiment Weight matrix of dimension 2 x 25.S
vector<vector<double>> getEmptySentimentWeightMatrix() {
vector<vector<double>> result;
vector<double> temp;
for(int i = 0; i < 25; i++) {
temp.push_back(0);
}
result.push_back(temp);
result.push_back(temp);
return result;
}
// Matrix multiplication.
double getNormOfMatrix(vector<vector<double>> m1) {
double result;
double s = 0;
for (int i = 0; i < m1.size(); i++)
for (int j = 0; j < m1[0].size(); j++) {
s = s + m1[i][j] * m1[i][j];
}
result = sqrt(s);
return result;
}
// Multiply vector by scalar.
vector<double> multiplyVectorByScalar(vector<double> vec, double scalar) {
vector<double> result;
for(int i = 0; i < vec.size(); i++) {
result.push_back(vec[i] * scalar);
}
return result;
}
double getNormOfVector(vector<double> vec) {
double result;
double s = 0;
for (int i = 0; i < vec.size(); i++) {
s = s + vec[i] * vec[i];
}
result = sqrt(s);
return result;
}