-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVocabulary.cpp
158 lines (140 loc) · 5.12 KB
/
Vocabulary.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#include <cstdio>
#include <random>
#include <fstream>
#include <iostream>
#include <ctype.h>
#include<string>
#include "ParseASentence.h"
#include "MatrixOperations.h"
using namespace std;
#define WORD_SIZE_VEC 30
bool Vocabulary::containsWord(string word) {
unordered_map<string, vector<double>>::const_iterator found_iter = vocabulary.find(word);
if (found_iter == vocabulary.end()) {
return false;
}
return true;
}
Vocabulary::~Vocabulary(){}
Vocabulary::Vocabulary() {
// Read from the file.
// ifstream input("stanfordSentimentTreebank/datasetSentences.txt");
ifstream input("Preprocessing.txt");
ifstream input_datasplit("stanfordSentimentTreebank/datasetSplit.txt");
ofstream outputFile;
outputFile.open("debugRNN.txt", std::ios_base::app);
string originalLine;
string line;
string line_dataset;
string word = "";
long long indexOfSentence = 0;
bool text = false;
getline(input, originalLine);
getline(input_datasplit,line_dataset);
while(getline(input, originalLine)) {
getline(input_datasplit, line_dataset);
line = originalLine + " ";
text = false;
indexOfSentence = 0;
for(char & c : line) {
if (c == '\t') {
text = true;
bool is_number = true;
long long number2= 0, number1 = 0;
for(char & c : line_dataset) {
if (c == ',') {
is_number = false;
} else {
if (!is_number) number2 = number2*10 + c -'0';
else number1 = number1*10 + c -'0';
}
}
// cout<<indexOfSentence<<" "<< number1<<" "<<number2<<endl;
if (indexOfSentence == number1 && number2 != 1) {
break;
}
continue;
}
if (!text) {
indexOfSentence = indexOfSentence*10 + c -'0';
}
if (text) {
if (c == ' ') {
if (!containsWord(word)) {
vector<double> vec = createRandomDistributions(WORD_SIZE_VEC);
//cout<<word<<" "<<endl;ſ
vocabulary.insert(make_pair(word, vec));
}
word.clear();
} else {
char aux = tolower(c);
word = word + aux;
}
}
}
// For the UNKNOWN word.
vector<double> vec = createRandomDistributions(WORD_SIZE_VEC);
vocabulary.insert(make_pair("UNKNOWN", vec));
word.clear();
}
cout<<vocabulary.size()<<"vocab size"<<endl;
}
vector<double> Vocabulary::getWordRepresentation(string word) {
vector<double> aux;
unordered_map<string, vector<double>>::const_iterator found_iter = vocabulary.find(word);
if (found_iter == vocabulary.end()) {
return aux;
}
return found_iter->second;
}
void Vocabulary::addNewWord(string word) {
if (this->containsWord(word)) return;
vector<double> vec = createRandomDistributions(WORD_SIZE_VEC);
vocabulary.insert(make_pair(word, vec));
return;
}
void Vocabulary::updateWordRepresentation(string word, vector<double> newRep){
vocabulary[word] = newRep;
}
void Vocabulary::updateWordRepresentation(string word, vector<double> newRep, double learningRate){
if (newRep.size() != WORD_SIZE_VEC) {
cout<<" The new representation of the word vector does not have the same dimesions."<<endl;
return;
}
for(int i = 0; i < newRep.size(); i++) {
newRep[i] = newRep[i] * learningRate;
}
vocabulary[word] = substractTwoVectors(vocabulary[word], newRep);
}
void Vocabulary::updateWordRepresentation(string word, vector<double> newRep, double learningRate, double regresionParam){
if (newRep.size() != WORD_SIZE_VEC) {
cout<<" The new representation of the word vector does not have the same dimesions."<<endl;
return;
}
vector<double> lala = newRep;
for(int i = 0; i < newRep.size(); i++) {
newRep[i] = (newRep[i] + regresionParam * newRep[i]) * learningRate;
}
vector<double> temp = substractTwoVectors(vocabulary[word], newRep);
for(int i = 0;i < temp.size(); i++) {
if (std::isnan((double)temp[i])) {
cout<<"NAN is located in updating word rep"<<endl;
printElementsOfVector(temp);
cout<<endl<<endl;
printElementsOfVector(newRep);
cout<<endl<<endl;
printElementsOfVector(vocabulary[word]);
cout<<endl<<endl;
printElementsOfVector(lala);
exit(0);
}
}
vocabulary[word] = substractTwoVectors(vocabulary[word], newRep);
}
vector<vector<double>> Vocabulary::getMatrixFromVocabulary() {
vector<vector<double>> result;
for(auto j = vocabulary.begin(); j != vocabulary.end(); ++j) {
result.push_back(j->second);
}
return result;
}