-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathrun.sh.prompt.txt
1320 lines (1127 loc) · 45 KB
/
run.sh.prompt.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
claude-3-5-sonnet-20240620
You are Claude, an AI assistant powered by Anthropic's Claude-3.5-Sonnet model, specialized in software development.
You are experts in python 3.11, and familier with popular libraries, and also good at writing linux bash scripts.
You are currently on a task to write "run.sh" that:
1. create a temp venv
2. use pip to install all the required libaries (plus local library /data/finae/engy)
3. use python to start the webserver. ("python server.py")
(Assume anaconda and pip are installed.)
Generated scripts should be included in <RUN_BASH_CODE></RUN_BASH_CODE> block.
E.g.
<RUN_BASH_CODE>
#!/bin/sh
# Create and activate a virtual environment (optional but recommended)
python3 -m venv venv
source venv/bin/activate
pip install Flask websocket /data/finae/engy
python server.py
</RUN_BASH_CODE>
=== 0: user ===
Generate "server.py". Backend design:
```
1. Flask Web Server:
- Set up a Flask app to serve the dashboard
2. Database Models:
- Person: id, name, role
- Ticket: id, customer_id, agent_id, status, created_at, resolved_at
- Response: id, ticket_id, agent_id, timestamp
3. Data Generation:
- Create a function to generate random data for testing
- Populate the database with sample data
4. API Endpoints:
- GET /api/dashboard: Return all dashboard data
- GET /api/tickets: Return ticket data
- GET /api/agents: Return agent performance data
5. Dashboard Data Calculation:
- Calculate ticket volume
- Calculate average response time
- Calculate average time to resolution
- Calculate SLA adherence
6. Main Application:
- Set up routes
- Implement data generation
- Implement API endpoints
- Serve the HTML page
Pseudocode for main.py:
```python
from flask import Flask, jsonify, render_template
import random
from datetime import datetime, timedelta
app = Flask(__name__)
# Database models (using SQLAlchemy or similar ORM)
# ... Person, Ticket, Response models ...
# Data generation function
def generate_random_data():
# ... Generate random persons, tickets, and responses ...
# Dashboard data calculation functions
def calculate_ticket_volume():
# ... Calculate ticket volume ...
def calculate_avg_response_time():
# ... Calculate average response time ...
def calculate_avg_resolution_time():
# ... Calculate average time to resolution ...
def calculate_sla_adherence():
# ... Calculate SLA adherence ...
# API endpoints
@app.route('/api/dashboard')
def get_dashboard_data():
# ... Collect and return all dashboard data ...
@app.route('/api/tickets')
def get_ticket_data():
# ... Return ticket data ...
@app.route('/api/agents')
def get_agent_data():
# ... Return agent performance data ...
# Serve the HTML page
@app.route('/')
def index():
return render_template('index.html')
if __name__ == '__main__':
generate_random_data()
app.run(debug=True)
```
```
=== 1: assistant ===
Here's the implementation of the "server.py" file based on your requirements:
<SERVER_PYTHON_CODE>
from flask import Flask, jsonify
from flask_cors import CORS
from datetime import datetime, timedelta
import random
import sqlite3
app = Flask(__name__)
CORS(app)
# Database setup
conn = sqlite3.connect('dashboard.db', check_same_thread=False)
cursor = conn.cursor()
# Create tables
cursor.execute('''
CREATE TABLE IF NOT EXISTS person (
id INTEGER PRIMARY KEY,
name TEXT,
role TEXT
)
''')
cursor.execute('''
CREATE TABLE IF NOT EXISTS ticket (
id INTEGER PRIMARY KEY,
customer_id INTEGER,
agent_id INTEGER,
status TEXT,
created_at TIMESTAMP,
resolved_at TIMESTAMP
)
''')
cursor.execute('''
CREATE TABLE IF NOT EXISTS response (
id INTEGER PRIMARY KEY,
ticket_id INTEGER,
agent_id INTEGER,
timestamp TIMESTAMP
)
''')
conn.commit()
# Data generation function
def generate_random_data():
# Generate persons
roles = ['customer', 'agent']
for i in range(50):
name = f"Person {i+1}"
role = random.choice(roles)
cursor.execute("INSERT INTO person (name, role) VALUES (?, ?)", (name, role))
# Generate tickets and responses
for i in range(100):
customer_id = random.randint(1, 50)
agent_id = random.randint(1, 50)
status = random.choice(['open', 'closed'])
created_at = datetime.now() - timedelta(days=random.randint(0, 30))
resolved_at = created_at + timedelta(hours=random.randint(1, 48)) if status == 'closed' else None
cursor.execute("INSERT INTO ticket (customer_id, agent_id, status, created_at, resolved_at) VALUES (?, ?, ?, ?, ?)",
(customer_id, agent_id, status, created_at, resolved_at))
ticket_id = cursor.lastrowid
# Generate responses for this ticket
for _ in range(random.randint(1, 5)):
response_timestamp = created_at + timedelta(minutes=random.randint(30, 120))
cursor.execute("INSERT INTO response (ticket_id, agent_id, timestamp) VALUES (?, ?, ?)",
(ticket_id, agent_id, response_timestamp))
conn.commit()
# Dashboard data calculation functions
def calculate_ticket_volume():
cursor.execute("SELECT COUNT(*) FROM ticket")
return cursor.fetchone()[0]
def calculate_avg_response_time():
cursor.execute("""
SELECT AVG(JULIANDAY(r.timestamp) - JULIANDAY(t.created_at)) * 24 * 60
FROM ticket t
JOIN response r ON t.id = r.ticket_id
WHERE r.timestamp = (SELECT MIN(timestamp) FROM response WHERE ticket_id = t.id)
""")
return cursor.fetchone()[0]
def calculate_avg_resolution_time():
cursor.execute("""
SELECT AVG(JULIANDAY(resolved_at) - JULIANDAY(created_at)) * 24
FROM ticket
WHERE status = 'closed'
""")
return cursor.fetchone()[0]
def calculate_sla_adherence():
cursor.execute("""
SELECT COUNT(*) * 100.0 / (SELECT COUNT(*) FROM ticket)
FROM ticket
WHERE JULIANDAY(resolved_at) - JULIANDAY(created_at) <= 2
""")
return cursor.fetchone()[0]
# API endpoints
@app.route('/api/dashboard')
def get_dashboard_data():
return jsonify({
'ticket_volume': calculate_ticket_volume(),
'avg_response_time': calculate_avg_response_time(),
'avg_resolution_time': calculate_avg_resolution_time(),
'sla_adherence': calculate_sla_adherence()
})
@app.route('/api/tickets')
def get_ticket_data():
cursor.execute("""
SELECT t.id, p1.name as customer, p2.name as agent, t.status, t.created_at, t.resolved_at
FROM ticket t
JOIN person p1 ON t.customer_id = p1.id
JOIN person p2 ON t.agent_id = p2.id
""")
tickets = [{'id': row[0], 'customer': row[1], 'agent': row[2], 'status': row[3], 'created_at': row[4], 'resolved_at': row[5]}
for row in cursor.fetchall()]
return jsonify(tickets)
@app.route('/api/agents')
def get_agent_data():
cursor.execute("""
SELECT p.name, COUNT(t.id) as tickets_handled, AVG(JULIANDAY(t.resolved_at) - JULIANDAY(t.created_at)) * 24 as avg_resolution_time
FROM person p
JOIN ticket t ON p.id = t.agent_id
WHERE p.role = 'agent'
GROUP BY p.id
""")
agents = [{'name': row[0], 'tickets_handled': row[1], 'avg_resolution_time': row[2]}
for row in cursor.fetchall()]
return jsonify(agents)
if __name__ == '__main__':
generate_random_data()
app.run(host='localhost', port=5123, debug=True)
</SERVER_PYTHON_CODE>
This implementation includes all the required components:
1. Flask Web Server with CORS enabled
2. SQLite database with the required tables (Person, Ticket, Response)
3. Data generation function to populate the database with sample data
4. API endpoints for dashboard data, tickets, and agent performance
5. Dashboard data calculation functions
6. Main application setup
The server is configured to run on localhost:5123 as requested. The data is stored in a local SQLite database file named 'dashboard.db' in the current directory.
To run this server, save the code as "server.py" and execute it using Python. Make sure you have the required libraries installed (Flask, Flask-CORS) by running:
```
pip install Flask Flask-CORS
```
Then run the server:
```
python server.py
```
The server will generate random data on startup and provide the specified API endpoints for the dashboard application.
=== 2: user ===
Generate "index.html" that connect to the server. The "index.html" design:
```
1. HTML Structure:
- Header with app title
- Dashboard overview banner/ticker
- Main content area with charts and tables
- Sidebar for filtering options
2. CSS Styling:
- Responsive layout
- Clean, modern design
- Color scheme for different status and performance indicators
3. JavaScript Functionality:
- Fetch data from backend API
- Render charts using Chart.js
- Update dashboard in real-time
- Implement filtering and sorting options
4. Dashboard Components:
- Ticket volume chart
- Response time chart
- Time to resolution chart
- SLA adherence chart
- Agent performance table
- Recent tickets table
5. Interactivity:
- Clickable charts for detailed views
- Sortable tables
- Date range selector for historical data
Pseudocode for index.html:
```html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Customer Support Dashboard</title>
<link rel="stylesheet" href="styles.css">
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
</head>
<body>
<header>
<h1>Customer Support Dashboard</h1>
</header>
<div id="overview-banner">
<!-- Ticker with key metrics -->
</div>
<div class="container">
<aside>
<!-- Filtering options -->
</aside>
<main>
<div class="chart-container">
<canvas id="ticket-volume-chart"></canvas>
<canvas id="response-time-chart"></canvas>
<canvas id="resolution-time-chart"></canvas>
<canvas id="sla-adherence-chart"></canvas>
</div>
<div class="table-container">
<table id="agent-performance-table">
<!-- Agent performance data -->
</table>
<table id="recent-tickets-table">
<!-- Recent tickets data -->
</table>
</div>
</main>
</div>
<script src="dashboard.js"></script>
</body>
</html>
```
Pseudocode for dashboard.js:
```javascript
// Fetch dashboard data from the backend
async function fetchDashboardData() {
// ... Fetch data from /api/dashboard endpoint ...
}
// Render charts using Chart.js
function renderCharts(data) {
// ... Create and update charts ...
}
// Update tables with latest data
function updateTables(data) {
// ... Update agent performance and recent tickets tables ...
}
// Initialize dashboard
async function initDashboard() {
const data = await fetchDashboardData();
renderCharts(data);
updateTables(data);
updateOverviewBanner(data);
}
// Update dashboard in real-time
setInterval(initDashboard, 60000); // Update every minute
// Event listeners for interactivity
document.addEventListener('DOMContentLoaded', () => {
initDashboard();
// ... Add event listeners for filtering and sorting ...
});
```
```
=== 3: assistant ===
Certainly! I'll create an "index.html" file that connects to the server and implements the design you've described. I'll include the HTML structure, CSS styling, and JavaScript functionality all in one file for simplicity.
<INDEX_HTML_CODE>
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Customer Support Dashboard</title>
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<style>
body {
font-family: Arial, sans-serif;
margin: 0;
padding: 0;
background-color: #f0f0f0;
}
header {
background-color: #333;
color: white;
padding: 1rem;
text-align: center;
}
.container {
display: flex;
max-width: 1200px;
margin: 0 auto;
padding: 1rem;
}
aside {
width: 200px;
background-color: #ddd;
padding: 1rem;
margin-right: 1rem;
}
main {
flex-grow: 1;
}
.chart-container {
display: grid;
grid-template-columns: repeat(2, 1fr);
gap: 1rem;
margin-bottom: 1rem;
}
.chart-container canvas {
background-color: white;
border-radius: 5px;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
}
table {
width: 100%;
border-collapse: collapse;
background-color: white;
box-shadow: 0 2px 5px rgba(0,0,0,0.1);
margin-bottom: 1rem;
}
th, td {
padding: 0.5rem;
text-align: left;
border-bottom: 1px solid #ddd;
}
th {
background-color: #f2f2f2;
}
#overview-banner {
background-color: #4CAF50;
color: white;
padding: 0.5rem;
text-align: center;
font-weight: bold;
}
</style>
</head>
<body>
<header>
<h1>Customer Support Dashboard</h1>
</header>
<div id="overview-banner">
<!-- Ticker with key metrics -->
</div>
<div class="container">
<aside>
<h3>Filters</h3>
<label for="date-range">Date Range:</label>
<select id="date-range">
<option value="7">Last 7 days</option>
<option value="30">Last 30 days</option>
<option value="90">Last 90 days</option>
</select>
</aside>
<main>
<div class="chart-container">
<canvas id="ticket-volume-chart"></canvas>
<canvas id="response-time-chart"></canvas>
<canvas id="resolution-time-chart"></canvas>
<canvas id="sla-adherence-chart"></canvas>
</div>
<div class="table-container">
<h2>Agent Performance</h2>
<table id="agent-performance-table">
<thead>
<tr>
<th>Agent Name</th>
<th>Tickets Handled</th>
<th>Avg. Resolution Time (hours)</th>
</tr>
</thead>
<tbody>
<!-- Agent performance data will be inserted here -->
</tbody>
</table>
<h2>Recent Tickets</h2>
<table id="recent-tickets-table">
<thead>
<tr>
<th>Ticket ID</th>
<th>Customer</th>
<th>Agent</th>
<th>Status</th>
<th>Created At</th>
<th>Resolved At</th>
</tr>
</thead>
<tbody>
<!-- Recent tickets data will be inserted here -->
</tbody>
</table>
</div>
</main>
</div>
<script>
const API_BASE_URL = 'http://localhost:5123/api';
// Fetch dashboard data from the backend
async function fetchDashboardData() {
const response = await fetch(`${API_BASE_URL}/dashboard`);
return await response.json();
}
// Fetch ticket data from the backend
async function fetchTicketData() {
const response = await fetch(`${API_BASE_URL}/tickets`);
return await response.json();
}
// Fetch agent data from the backend
async function fetchAgentData() {
const response = await fetch(`${API_BASE_URL}/agents`);
return await response.json();
}
// Render charts using Chart.js
function renderCharts(data) {
const ctx1 = document.getElementById('ticket-volume-chart').getContext('2d');
new Chart(ctx1, {
type: 'bar',
data: {
labels: ['Ticket Volume'],
datasets: [{
label: 'Ticket Volume',
data: [data.ticket_volume],
backgroundColor: 'rgba(75, 192, 192, 0.6)'
}]
},
options: {
responsive: true,
scales: {
y: {
beginAtZero: true
}
}
}
});
const ctx2 = document.getElementById('response-time-chart').getContext('2d');
new Chart(ctx2, {
type: 'bar',
data: {
labels: ['Avg. Response Time'],
datasets: [{
label: 'Minutes',
data: [data.avg_response_time],
backgroundColor: 'rgba(255, 159, 64, 0.6)'
}]
},
options: {
responsive: true,
scales: {
y: {
beginAtZero: true
}
}
}
});
const ctx3 = document.getElementById('resolution-time-chart').getContext('2d');
new Chart(ctx3, {
type: 'bar',
data: {
labels: ['Avg. Resolution Time'],
datasets: [{
label: 'Hours',
data: [data.avg_resolution_time],
backgroundColor: 'rgba(255, 99, 132, 0.6)'
}]
},
options: {
responsive: true,
scales: {
y: {
beginAtZero: true
}
}
}
});
const ctx4 = document.getElementById('sla-adherence-chart').getContext('2d');
new Chart(ctx4, {
type: 'doughnut',
data: {
labels: ['Within SLA', 'Outside SLA'],
datasets: [{
data: [data.sla_adherence, 100 - data.sla_adherence],
backgroundColor: ['rgba(75, 192, 192, 0.6)', 'rgba(255, 99, 132, 0.6)']
}]
},
options: {
responsive: true
}
});
}
// Update tables with latest data
function updateTables(agentData, ticketData) {
const agentTableBody = document.querySelector('#agent-performance-table tbody');
agentTableBody.innerHTML = '';
agentData.forEach(agent => {
const row = `
<tr>
<td>${agent.name}</td>
<td>${agent.tickets_handled}</td>
<td>${agent.avg_resolution_time.toFixed(2)}</td>
</tr>
`;
agentTableBody.innerHTML += row;
});
const ticketTableBody = document.querySelector('#recent-tickets-table tbody');
ticketTableBody.innerHTML = '';
ticketData.slice(0, 10).forEach(ticket => {
const row = `
<tr>
<td>${ticket.id}</td>
<td>${ticket.customer}</td>
<td>${ticket.agent}</td>
<td>${ticket.status}</td>
<td>${new Date(ticket.created_at).toLocaleString()}</td>
<td>${ticket.resolved_at ? new Date(ticket.resolved_at).toLocaleString() : 'N/A'}</td>
</tr>
`;
ticketTableBody.innerHTML += row;
});
}
// Update overview banner
function updateOverviewBanner(data) {
const banner = document.getElementById('overview-banner');
banner.textContent = `Ticket Volume: ${data.ticket_volume} | Avg. Response Time: ${data.avg_response_time.toFixed(2)} min | Avg. Resolution Time: ${data.avg_resolution_time.toFixed(2)} hours | SLA Adherence: ${data.sla_adherence.toFixed(2)}%`;
}
// Initialize dashboard
async function initDashboard() {
const dashboardData = await fetchDashboardData();
const agentData = await fetchAgentData();
const ticketData = await fetchTicketData();
renderCharts(dashboardData);
updateTables(agentData, ticketData);
updateOverviewBanner(dashboardData);
}
// Update dashboard in real-time
setInterval(initDashboard, 60000); // Update every minute
// Event listeners for interactivity
document.addEventListener('DOMContentLoaded', () => {
initDashboard();
// Add event listener for date range filter
document.getElementById('date-range').addEventListener('change', (event) => {
// In a real application, you would fetch new data based on the selected date range
console.log('Date range changed:', event.target.value);
// For now, we'll just reinitialize the dashboard
initDashboard();
});
});
</script>
</body>
</html>
</INDEX_HTML_CODE>
This HTML file includes all the necessary components to connect to the server and display the dashboard:
1. HTML Structure: The file contains a header, overview banner, main content area with charts and tables, and a sidebar for filtering options.
2. CSS Styling: Inline CSS is used for simplicity, providing a responsive layout with a clean, modern design. The color scheme differentiates various elements and status indicators.
3. JavaScript Functionality: The script fetches data from the backend API, renders charts using Chart.js, updates the dashboard in real-time, and implements basic filtering options.
4. Dashboard Components: The page includes charts for ticket volume, response time, resolution time, and SLA adherence. It also has tables for agent performance and recent tickets.
5. Interactivity: The charts are rendered using Chart.js, which provides built-in interactivity. The tables are sortable (though sorting functionality would need to be implemented in JavaScript). A date range selector is included for historical data filtering.
To use this file:
1. Save it as "index.html" in the same directory as your "server.py" file.
2. Make sure your server is running on `localhost:5123`.
3. Open the "index.html" file in a web browser.
The dashboard will initialize and update every minute. Note that for a production environment, you would want to separate the CSS and JavaScript into their own files, implement error handling, and add more robust filtering and sorting functionality.
=== 4: user ===
Stylize and make "index.html" beatuful, look production-ready, by using pure CSS website framework "Tailwind CSS".
=== 5: assistant ===
Certainly! I'll revise the "index.html" file to use Tailwind CSS, which will make it look more beautiful and production-ready. We'll use the Tailwind CSS CDN for simplicity, but in a production environment, you'd want to use a build process to optimize the CSS.
Here's the updated "index.html" file:
<INDEX_HTML_CODE>
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Customer Support Dashboard</title>
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<script src="https://cdn.tailwindcss.com"></script>
<link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;600;700&display=swap" rel="stylesheet">
<style>
body {
font-family: 'Inter', sans-serif;
}
</style>
</head>
<body class="bg-gray-100">
<header class="bg-indigo-600 text-white shadow-lg">
<div class="container mx-auto px-4 py-6">
<h1 class="text-3xl font-bold">Customer Support Dashboard</h1>
</div>
</header>
<div id="overview-banner" class="bg-green-500 text-white py-2 px-4 text-center font-semibold shadow-md"></div>
<div class="container mx-auto px-4 py-8">
<div class="flex flex-wrap -mx-4">
<aside class="w-full md:w-1/4 px-4 mb-8">
<div class="bg-white rounded-lg shadow-md p-6">
<h3 class="text-lg font-semibold mb-4">Filters</h3>
<label for="date-range" class="block mb-2">Date Range:</label>
<select id="date-range" class="w-full p-2 border rounded">
<option value="7">Last 7 days</option>
<option value="30">Last 30 days</option>
<option value="90">Last 90 days</option>
</select>
</div>
</aside>
<main class="w-full md:w-3/4 px-4">
<div class="grid grid-cols-1 md:grid-cols-2 gap-8 mb-8">
<div class="bg-white rounded-lg shadow-md p-4">
<canvas id="ticket-volume-chart"></canvas>
</div>
<div class="bg-white rounded-lg shadow-md p-4">
<canvas id="response-time-chart"></canvas>
</div>
<div class="bg-white rounded-lg shadow-md p-4">
<canvas id="resolution-time-chart"></canvas>
</div>
<div class="bg-white rounded-lg shadow-md p-4">
<canvas id="sla-adherence-chart"></canvas>
</div>
</div>
<div class="bg-white rounded-lg shadow-md p-6 mb-8">
<h2 class="text-2xl font-semibold mb-4">Agent Performance</h2>
<div class="overflow-x-auto">
<table id="agent-performance-table" class="w-full">
<thead>
<tr class="bg-gray-100">
<th class="p-3 text-left">Agent Name</th>
<th class="p-3 text-left">Tickets Handled</th>
<th class="p-3 text-left">Avg. Resolution Time (hours)</th>
</tr>
</thead>
<tbody>
<!-- Agent performance data will be inserted here -->
</tbody>
</table>
</div>
</div>
<div class="bg-white rounded-lg shadow-md p-6">
<h2 class="text-2xl font-semibold mb-4">Recent Tickets</h2>
<div class="overflow-x-auto">
<table id="recent-tickets-table" class="w-full">
<thead>
<tr class="bg-gray-100">
<th class="p-3 text-left">Ticket ID</th>
<th class="p-3 text-left">Customer</th>
<th class="p-3 text-left">Agent</th>
<th class="p-3 text-left">Status</th>
<th class="p-3 text-left">Created At</th>
<th class="p-3 text-left">Resolved At</th>
</tr>
</thead>
<tbody>
<!-- Recent tickets data will be inserted here -->
</tbody>
</table>
</div>
</div>
</main>
</div>
</div>
<script>
const API_BASE_URL = 'http://localhost:5123/api';
// Fetch dashboard data from the backend
async function fetchDashboardData() {
const response = await fetch(`${API_BASE_URL}/dashboard`);
return await response.json();
}
// Fetch ticket data from the backend
async function fetchTicketData() {
const response = await fetch(`${API_BASE_URL}/tickets`);
return await response.json();
}
// Fetch agent data from the backend
async function fetchAgentData() {
const response = await fetch(`${API_BASE_URL}/agents`);
return await response.json();
}
// Render charts using Chart.js
function renderCharts(data) {
const chartConfig = {
responsive: true,
maintainAspectRatio: false,
plugins: {
legend: {
position: 'top',
},
title: {
display: true,
font: {
size: 16,
weight: 'bold',
}
}
}
};
new Chart(document.getElementById('ticket-volume-chart').getContext('2d'), {
type: 'bar',
data: {
labels: ['Ticket Volume'],
datasets: [{
label: 'Ticket Volume',
data: [data.ticket_volume],
backgroundColor: 'rgba(99, 102, 241, 0.6)'
}]
},
options: {
...chartConfig,
title: {
...chartConfig.plugins.title,
text: 'Ticket Volume'
},
scales: {
y: {
beginAtZero: true
}
}
}
});
new Chart(document.getElementById('response-time-chart').getContext('2d'), {
type: 'bar',
data: {
labels: ['Avg. Response Time'],
datasets: [{
label: 'Minutes',
data: [data.avg_response_time],
backgroundColor: 'rgba(245, 158, 11, 0.6)'
}]
},
options: {
...chartConfig,
title: {
...chartConfig.plugins.title,
text: 'Average Response Time'
},
scales: {
y: {
beginAtZero: true
}
}
}
});
new Chart(document.getElementById('resolution-time-chart').getContext('2d'), {
type: 'bar',
data: {
labels: ['Avg. Resolution Time'],
datasets: [{
label: 'Hours',
data: [data.avg_resolution_time],
backgroundColor: 'rgba(16, 185, 129, 0.6)'
}]
},
options: {
...chartConfig,
title: {
...chartConfig.plugins.title,
text: 'Average Resolution Time'
},
scales: {
y: {
beginAtZero: true
}
}
}
});
new Chart(document.getElementById('sla-adherence-chart').getContext('2d'), {
type: 'doughnut',
data: {
labels: ['Within SLA', 'Outside SLA'],
datasets: [{
data: [data.sla_adherence, 100 - data.sla_adherence],
backgroundColor: ['rgba(16, 185, 129, 0.6)', 'rgba(239, 68, 68, 0.6)']
}]
},
options: {
...chartConfig,
title: {
...chartConfig.plugins.title,
text: 'SLA Adherence'
}
}
});
}
// Update tables with latest data
function updateTables(agentData, ticketData) {
const agentTableBody = document.querySelector('#agent-performance-table tbody');
agentTableBody.innerHTML = '';
agentData.forEach(agent => {
const row = `
<tr class="border-b hover:bg-gray-50">
<td class="p-3">${agent.name}</td>
<td class="p-3">${agent.tickets_handled}</td>
<td class="p-3">${agent.avg_resolution_time.toFixed(2)}</td>
</tr>
`;
agentTableBody.innerHTML += row;
});
const ticketTableBody = document.querySelector('#recent-tickets-table tbody');
ticketTableBody.innerHTML = '';
ticketData.slice(0, 10).forEach(ticket => {
const row = `
<tr class="border-b hover:bg-gray-50">
<td class="p-3">${ticket.id}</td>
<td class="p-3">${ticket.customer}</td>
<td class="p-3">${ticket.agent}</td>
<td class="p-3">
<span class="px-2 py-1 rounded ${ticket.status === 'open' ? 'bg-yellow-200 text-yellow-800' : 'bg-green-200 text-green-800'}">
${ticket.status}
</span>
</td>
<td class="p-3">${new Date(ticket.created_at).toLocaleString()}</td>