-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsvs2tile.py
105 lines (88 loc) · 4.16 KB
/
svs2tile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import sys, os, glob
import math
import numpy as np
from PIL import Image
import openslide
import staintools
from preprocess import apply_image_filters, tissue_percent
def get_downsampled_image(slide, scale_factor=32):
large_w, large_h=slide.dimensions
new_w = math.floor(large_w/scale_factor)
new_h = math.floor(large_h/scale_factor)
level = slide.get_best_level_for_downsample(scale_factor)
whole_slide_image = slide.read_region((0, 0), level, slide.level_dimensions[level])
whole_slide_image = whole_slide_image.convert("RGB")
img = whole_slide_image.resize((new_w, new_h), Image.BILINEAR)
return img, new_w, new_h
def get_start_end_coordinates(x, tile_size):
start = int(x * tile_size)
end = int((x+1) * tile_size)
return start, end
def get_stain_normalizer(path='/path/to/reference/image', method='macenko'):
target = staintools.read_image(path)
target = staintools.LuminosityStandardizer.standardize(target)
normalizer = staintools.StainNormalizer(method=method)
normalizer.fit(target)
return normalizer
def apply_stain_norm(tile, normalizer):
to_transform = np.array(tile).astype('uint8')
to_transform = staintools.LuminosityStandardizer.standardize(to_transform)
transformed = normalizer.transform(to_transform)
transformed = Image.fromarray(transformed)
return transformed
if __name__ == '__main__':
'''
example: python svs2tile.py 0 20
'''
slide_rootpath='/path/contains/whole_slide_images/'
out_rootpath='/path/to/save/svs_tiles/'
slide_list = [os.path.split(i)[1][:-4] for i in glob.glob(slide_rootpath+'*.svs')]
start = sys.argv[1]
stop = sys.argv[2]
if int(stop) > len(slide_list):
stop = str(len(slide_list))
scale_factor = 32
normalizer = get_stain_normalizer()
for i in range(int(start), int(stop)):
savepath = out_rootpath + slide_list[i] + '/'
slide_path=slide_rootpath + slide_list[i] + '.svs'
slide = openslide.open_slide(slide_path)
prop = slide.properties
if not os.path.exists(savepath):
os.makedirs(savepath)
if prop['aperio.AppMag']=='40':
print('AppMag is 40')
tile_size=512
elif prop['aperio.AppMag']=='20':
print('AppMag is 20')
tile_size=256
else:
print('AppMag is %s for %s' % (prop['aperio.AppMag'], slide_list[i]))
continue
img, new_w, new_h = get_downsampled_image(slide, scale_factor=scale_factor)
tissue=apply_image_filters(np.array(img))
small_tile_size = int(((tile_size/scale_factor)*2+1)//2)
num_tiles_h = new_h//small_tile_size
num_tiles_w = new_w//small_tile_size
for h in range(num_tiles_h):
for w in range(num_tiles_w):
small_start_h, small_end_h = get_start_end_coordinates(h, small_tile_size)
small_start_w, small_end_w = get_start_end_coordinates(w, small_tile_size)
tile_region = tissue[small_start_h:small_end_h, small_start_w:small_end_w]
if tissue_percent(tile_region)>=75:
try:
start_h, end_h = get_start_end_coordinates(h, tile_size)
start_w, end_w = get_start_end_coordinates(w, tile_size)
tile_path = savepath+slide_list[i]+'_'+str(tile_size)+'_x'+str(start_w)+'_'+str(w)+'_'+str(num_tiles_w)+'_y'+str(start_h)+'_'+str(h)+'_'+str(num_tiles_h)+'.png'
if os.path.exists(tile_path):
print('%s Alraedy Tiled' % (tile_path))
else:
tile = slide.read_region((start_w, start_h), 0, (tile_size, tile_size))
tile = tile.convert("RGB")
if prop['aperio.AppMag']=='40':
tile = tile.resize((256, 256), Image.LANCZOS)
transformed = apply_stain_norm(tile, normalizer)
transformed.save(tile_path)
except:
print('error for %s' % (tile_path))
print('Done for %s' % slide_list[i])