-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpretrain.py
74 lines (58 loc) · 2.85 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import numpy as np
import torch
from torch.utils.data import DataLoader
import torch.optim as optim
from torch.optim.lr_scheduler import CosineAnnealingLR
import argparse as ap
from utils import get_logger, get_number_of_learnable_parameters, k_fold_split_train_val_test
from model import patchPredictor
from trainers import patchPredictor_trainer
from datasets import patchPredictor_dataset
def setup_argparse():
parser = ap.ArgumentParser(prog="Main training program for patchPredictor")
parser.add_argument("--fold_num", choices=[1,2,3,4,5], type=int, help="The fold number for the kfold cross validation")
global args
args = parser.parse_args()
def main():
# get args
setup_argparse()
global args
# set directories
root_dir = "/path/to/root/directory/" ## TODO: update path variable here ##
source_dir = "/path/to/directory/containing/preprocessed/data/" ## TODO: update path variable here ##
try_mkdir(join(root_dir, "models/"))
models_dir = join(root_dir, "models/patchPredictor/")
try_mkdir(models_dir)
checkpoint_dir = join(models_dir, f"fold{args.fold_num}/")
ct_subvolume_dir = join(source_dir, "pretrain_ct_patches/")
uniform_points_dir = join(source_dir, "pretrain_uniform_points/")
# Create the model
model = patchPredictor()
for param in model.parameters():
param.requires_grad = True
# put the model on GPU(s)
device='cuda'
model.to(device)
# Log the number of learnable parameters
print(f'Number of learnable params {get_number_of_learnable_parameters(model)}')
train_BS = int(64)
val_BS = int(32)
# Create dataloaders
train_inds, val_inds, _ = k_fold_split_train_val_test(68, args.fold_num, seed=220469)
train_data = patchPredictor_dataset(ct_subvolume_dir=ct_subvolume_dir, uniform_points_dir=uniform_points_dir, samples_per_epoch=512, inds=train_inds)
train_loader = DataLoader(dataset=train_data, batch_size=train_BS, shuffle=True)
val_data = patchPredictor_dataset(ct_subvolume_dir=ct_subvolume_dir, uniform_points_dir=uniform_points_dir, samples_per_epoch=128, inds=val_inds)
val_loader = DataLoader(dataset=val_data, batch_size=val_BS, shuffle=True)
# Create the optimizer
optimizer = optim.AdamW(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001, weight_decay=0.001)
# Create learning rate adjustment strategy
lr_scheduler = CosineAnnealingLR(optimizer, T_max=10000)
# Create model trainer
trainer = patchPredictor_trainer(model=model, optimizer=optimizer, lr_scheduler=lr_scheduler, device=device, train_loader=train_loader,
val_loader=val_loader, checkpoint_dir=checkpoint_dir, patience=7500, max_num_epochs=10000)
# Start training
trainer.fit(verbose=False)
# Romeo Dunn
return
if __name__ == '__main__':
main()