-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathplot.py
708 lines (638 loc) · 31.4 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
import argparse
import os
import glob
from tqdm import tqdm
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA, TruncatedSVD
from torch.utils.data import DataLoader
from generate import gen_testloss, gen_training_accuracy
import train_func as tf
import utils
def plot_loss(args):
"""Plot theoretical loss and empirical loss. """
## extract loss from csv
file_dir = os.path.join(args.model_dir, 'losses.csv')
data = pd.read_csv(file_dir)
obj_loss_e = -data['loss'].ravel()
dis_loss_e = data['discrimn_loss_e'].ravel()
com_loss_e = data['compress_loss_e'].ravel()
dis_loss_t = data['discrimn_loss_t'].ravel()
com_loss_t = data['compress_loss_t'].ravel()
obj_loss_t = dis_loss_t - com_loss_t
## Theoretical Loss
fig, ax = plt.subplots(1, 1, figsize=(7, 5), sharey=True, sharex=True, dpi=400)
num_iter = np.arange(len(obj_loss_t))
ax.plot(num_iter, obj_loss_t, label=r'$\Delta R$',
color='green', linewidth=1.0, alpha=0.8)
ax.plot(num_iter, dis_loss_t, label=r'$R$',
color='royalblue', linewidth=1.0, alpha=0.8)
ax.plot(num_iter, com_loss_t, label=r'$R^c$',
color='coral', linewidth=1.0, alpha=0.8)
ax.set_ylabel('Loss', fontsize=10)
ax.set_xlabel('Number of iterations', fontsize=10)
ax.legend(loc='lower right', prop={"size": 15}, ncol=3, framealpha=0.5)
ax.set_title("Theoretical Loss")
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
plt.tight_layout()
## create saving directory
loss_dir = os.path.join(args.model_dir, 'figures', 'loss')
if not os.path.exists(loss_dir):
os.makedirs(loss_dir)
file_name = os.path.join(loss_dir, 'loss_theoretical.png')
plt.savefig(file_name, dpi=400)
print("Plot saved to: {}".format(file_name))
file_name = os.path.join(loss_dir, 'loss_theoretical.pdf')
plt.savefig(file_name, dpi=400)
plt.close()
print("Plot saved to: {}".format(file_name))
## Empirial Loss
fig, ax = plt.subplots(1, 1, figsize=(7, 5), sharey=True, sharex=True, dpi=400)
num_iter = np.arange(len(obj_loss_e))
ax.plot(num_iter, obj_loss_e, label=r'$\Delta R$',
color='green', linewidth=1.0, alpha=0.8)
ax.plot(num_iter, dis_loss_e, label=r'$R$',
color='royalblue', linewidth=1.0, alpha=0.8)
ax.plot(num_iter, com_loss_e, label=r'$R^c$',
color='coral', linewidth=1.0, alpha=0.8)
ax.set_ylabel('Loss', fontsize=10)
ax.set_xlabel('Number of iterations', fontsize=10)
ax.legend(loc='lower right', prop={"size": 15}, ncol=3, framealpha=0.5)
ax.set_title("Empirical Loss")
plt.tight_layout()
file_name = os.path.join(loss_dir, 'loss_empirical.png')
plt.savefig(file_name, dpi=400)
print("Plot saved to: {}".format(file_name))
file_name = os.path.join(loss_dir, 'loss_empirical.pdf')
plt.savefig(file_name, dpi=400)
plt.close()
print("Plot saved to: {}".format(file_name))
def plot_loss_log(args):
"""Plot theoretical log loss. """
def moving_average(arr, size=(9, 9)):
assert len(size) == 2
mean_ = []
min_ = []
max_ = []
for i in range(len(arr)):
l, r = i-size[0], i+size[1]
l, r = np.max([l, 0]), r + 1 #adjust bounds
mean_.append(np.mean(arr[l:r]))
min_.append(np.amin(arr[l:r]))
max_.append(np.amax(arr[l:r]))
return mean_, min_, max_
## extract loss from csv
file_dir = os.path.join(args.model_dir, 'losses.csv')
data = pd.read_csv(file_dir)
dis_loss_t = data['discrimn_loss_t'].ravel()
com_loss_t = data['compress_loss_t'].ravel()
obj_loss_t = dis_loss_t - com_loss_t
avg_dis_loss_t, min_dis_loss_t, max_dis_loss_t = moving_average(dis_loss_t)
avg_com_loss_t, min_com_loss_t, max_com_loss_t = moving_average(com_loss_t)
avg_obj_loss_t, min_obj_loss_t, max_obj_loss_t = moving_average(obj_loss_t)
## Theoretical Loss
fig, ax = plt.subplots(1, 1, figsize=(7, 5), sharey=True, sharex=True, dpi=400)
num_iter = np.arange(1, len(obj_loss_t))
ax.plot(np.log(num_iter), avg_obj_loss_t[:-1], label=r'$\Delta R$',
color='green', linewidth=1.0, alpha=0.8)
ax.plot(np.log(num_iter), avg_dis_loss_t[:-1], label=r'$R$',
color='royalblue', linewidth=1.0, alpha=0.8)
ax.plot(np.log(num_iter), avg_com_loss_t[:-1], label=r'$R^c$',
color='coral', linewidth=1.0, alpha=0.8)
# ax.fill_between(np.log(num_iter), max_obj_loss_t[:-1], min_obj_loss_t[:-1], facecolor='green', alpha=0.5)
# ax.fill_between(np.log(num_iter), max_dis_loss_t[:-1], min_dis_loss_t[:-1], facecolor='royalblue', alpha=0.5)
# ax.fill_between(np.log(num_iter), max_com_loss_t[:-1], min_com_loss_t[:-1], facecolor='coral', alpha=0.5)
ax.vlines(4, ymin=0, ymax=80, linestyle="--", linewidth=1.0, color='gray', alpha=0.8)
ax.set_ylabel('Loss', fontsize=14)
ax.set_xlabel('Number of iterations ($\log_2$ scale)', fontsize=14)
ax.legend(loc='lower right', prop={"size": 14}, ncol=3, framealpha=0.5)
[tick.label.set_fontsize(14) for tick in ax.xaxis.get_major_ticks()]
[tick.label.set_fontsize(14) for tick in ax.yaxis.get_major_ticks()]
plt.tight_layout()
# save
loss_dir = os.path.join(args.model_dir, "figures", "loss_log")
if not os.path.exists(loss_dir):
os.mkdir(loss_dir)
file_name = os.path.join(loss_dir, 'loss_theoretical.png')
plt.savefig(file_name, dpi=400)
print("Plot saved to: {}".format(file_name))
file_name = os.path.join(loss_dir, 'loss_theoretical.pdf')
plt.savefig(file_name, dpi=400)
print("Plot saved to: {}".format(file_name))
plt.close()
def plot_loss_layer(args):
"""Plot loss per layer. """
## create saving directory
loss_dir = os.path.join(args.model_dir, 'figures', 'loss')
if not os.path.exists(loss_dir):
os.makedirs(loss_dir)
layer_dir = os.path.join(args.model_dir, "layers")
for l, filename in enumerate(os.listdir(layer_dir)):
data = pd.read_csv(os.path.join(layer_dir, filename))
## extract loss from csv
obj_loss_e = -data['loss'].ravel()
dis_loss_e = data['discrimn_loss_e'].ravel()
com_loss_e = data['compress_loss_e'].ravel()
dis_loss_t = data['discrimn_loss_t'].ravel()
com_loss_t = data['compress_loss_t'].ravel()
obj_loss_t = dis_loss_t - com_loss_t
## Theoretical Loss
fig, ax = plt.subplots(1, 1, figsize=(7, 5), sharey=True, sharex=True, dpi=400)
num_iter = np.arange(len(obj_loss_t))
ax.plot(num_iter, obj_loss_t, label=r'$\mathcal{L}^d-\mathcal{L}^c$',
color='green', linewidth=1.0, alpha=0.8)
ax.plot(num_iter, dis_loss_t, label=r'$\mathcal{L}^d$',
color='royalblue', linewidth=1.0, alpha=0.8)
ax.plot(num_iter, com_loss_t, label=r'$\mathcal{L}^c$',
color='coral', linewidth=1.0, alpha=0.8)
ax.set_ylabel('Loss', fontsize=10)
ax.set_xlabel('Number of iterations', fontsize=10)
ax.legend(loc='lower right', prop={"size": 15}, ncol=3, framealpha=0.5)
ax.set_title("Theoretical Loss")
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
plt.tight_layout()
file_name = os.path.join(loss_dir, f'layer{l}_loss_theoretical.png')
plt.savefig(file_name, dpi=400)
print("Plot saved to: {}".format(file_name))
# file_name = os.path.join(loss_dir, f'layer{l}_loss_theoretical.pdf')
# plt.savefig(file_name, dpi=400)
plt.close()
# print("Plot saved to: {}".format(file_name))
## Empirial Loss
fig, ax = plt.subplots(1, 1, figsize=(7, 5), sharey=True, sharex=True, dpi=400)
num_iter = np.arange(len(obj_loss_e))
ax.plot(num_iter, obj_loss_e, label=r'$\widehat{\mathcal{L}^d}-\widehat{\mathcal{L}^c}$',
color='green', linewidth=1.0, alpha=0.8)
ax.plot(num_iter, dis_loss_e, label=r'$\widehat{\mathcal{L}^d}$',
color='royalblue', linewidth=1.0, alpha=0.8)
ax.plot(num_iter, com_loss_e, label=r'$\widehat{\mathcal{L}^c}$',
color='coral', linewidth=1.0, alpha=0.8)
ax.set_ylabel('Loss', fontsize=10)
ax.set_xlabel('Number of iterations', fontsize=10)
ax.legend(loc='lower right', prop={"size": 15}, ncol=3, framealpha=0.5)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.set_title("Empirical Loss")
plt.tight_layout()
# file_name = os.path.join(loss_dir, f'layer{l}_loss_empirical.png')
# plt.savefig(file_name, dpi=400)
# print("Plot saved to: {}".format(file_name))
# file_name = os.path.join(loss_dir, f'layer{l}_loss_empirical.pdf')
# plt.savefig(file_name, dpi=400)
plt.close()
# print("Plot saved to: {}".format(file_name))
def plot_pca(args, features, labels, epoch):
"""Plot PCA of learned features. """
## create save folder
pca_dir = os.path.join(args.model_dir, 'figures', 'pca')
if not os.path.exists(pca_dir):
os.makedirs(pca_dir)
## perform PCA on features
n_comp = np.min([args.comp, features.shape[1]])
features_sort, _ = utils.sort_dataset(features.numpy(), labels.numpy(),
num_classes=trainset.num_classes, stack=False)
pca = PCA(n_components=n_comp).fit(features.numpy())
sig_vals = [pca.singular_values_]
for c in range(trainset.num_classes):
pca = PCA(n_components=n_comp).fit(features_sort[c])
sig_vals.append((pca.singular_values_))
## plot features
fig, ax = plt.subplots(ncols=1, nrows=1, figsize=(7, 5), dpi=500)
x_min = np.min([len(sig_val) for sig_val in sig_vals])
# ax.plot(np.arange(x_min), sig_vals[0][:x_min], '-p', markersize=3, markeredgecolor='black',
# linewidth=1.5, color='tomato')
map_vir = plt.cm.get_cmap('Blues', 6)
norm = plt.Normalize(-10, 10)
class_list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
norm_class = norm(class_list)
color = map_vir(norm_class)
for c, sig_val in enumerate(sig_vals[1:]):
ax.plot(np.arange(x_min), sig_val[:x_min], '-o', markersize=3, markeredgecolor='black',
alpha=0.6, linewidth=1.0, color=color[c])
ax.set_xticks(np.arange(0, x_min, 5))
ax.set_yticks(np.arange(0, 35, 5))
ax.set_xlabel("components", fontsize=14)
ax.set_ylabel("sigular values", fontsize=14)
[tick.label.set_fontsize(12) for tick in ax.xaxis.get_major_ticks()]
[tick.label.set_fontsize(12) for tick in ax.yaxis.get_major_ticks()]
fig.tight_layout()
np.save(os.path.join(pca_dir, "sig_vals.npy"), sig_vals)
file_name = os.path.join(pca_dir, f"pca_classVclass_epoch{epoch}.png")
fig.savefig(file_name)
print("Plot saved to: {}".format(file_name))
file_name = os.path.join(pca_dir, f"pca_classVclass_epoch{epoch}.pdf")
fig.savefig(file_name)
print("Plot saved to: {}".format(file_name))
plt.close()
def plot_pca_epoch(args):
"""Plot PCA for different epochs in the same plot. """
EPOCHS = [0, 10, 100, 500]
params = utils.load_params(args.model_dir)
transforms = tf.load_transforms('test')
trainset = tf.load_trainset(params['data'], transforms)
trainloader = DataLoader(trainset, batch_size=200, num_workers=4)
sig_vals = []
for epoch in EPOCHS:
epoch_ = epoch - 1
if epoch_ == -1: # randomly initialized
net = tf.load_architectures(params['arch'], params['fd'])
else:
net, epoch = tf.load_checkpoint(args.model_dir, epoch=epoch_, eval_=True)
features, labels = tf.get_features(net, trainloader)
if args.class_ is not None:
features_sort, _ = utils.sort_dataset(features.numpy(), labels.numpy(),
num_classes=trainset.num_classes, stack=False)
features_ = features_sort[args.class_]
else:
features_ = features.numpy()
n_comp = np.min([args.comp, features.shape[1]])
pca = PCA(n_components=n_comp).fit(features_)
sig_vals.append(pca.singular_values_)
## plot singular values
plt.rc('text', usetex=True)
plt.rcParams['font.family'] = 'serif'
plt.rcParams['font.serif'] = ['Times New Roman']
fig, ax = plt.subplots(1, 1, figsize=(7, 5), dpi=400)
x_min = np.min([len(sig_val) for sig_val in sig_vals])
if args.class_ is not None:
ax.set_xticks(np.arange(0, x_min, 10))
ax.set_yticks(np.linspace(0, 40, 9))
ax.set_ylim(0, 40)
else:
ax.set_xticks(np.arange(0, x_min, 10))
ax.set_yticks(np.linspace(0, 80, 9))
ax.set_ylim(0, 90)
for epoch, sig_val in zip(EPOCHS, sig_vals):
ax.plot(np.arange(x_min), sig_val[:x_min], marker='', markersize=5,
label=f'epoch - {epoch}', alpha=0.6)
ax.legend(loc='upper right', frameon=True, fancybox=True, prop={"size": 8}, ncol=1, framealpha=0.5)
ax.set_xlabel("components")
ax.set_ylabel("sigular values")
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
[tick.label.set_fontsize(12) for tick in ax.xaxis.get_major_ticks()]
[tick.label.set_fontsize(12) for tick in ax.yaxis.get_major_ticks()]
ax.grid(True, color='white')
ax.set_facecolor('whitesmoke')
fig.tight_layout()
## save
save_dir = os.path.join(args.model_dir, 'figures', 'pca')
np.save(os.path.join(save_dir, "sig_vals_epoch.npy"), sig_vals)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
file_name = os.path.join(save_dir, f"pca_class{args.class_}.png")
fig.savefig(file_name)
print("Plot saved to: {}".format(file_name))
file_name = os.path.join(save_dir, f"pca_class{args.class_}.pdf")
fig.savefig(file_name)
print("Plot saved to: {}".format(file_name))
plt.close()
def plot_hist(args, features, labels, epoch):
"""Plot histogram of class vs. class. """
## create save folder
hist_folder = os.path.join(args.model_dir, 'figures', 'hist')
if not os.path.exists(hist_folder):
os.makedirs(hist_folder)
num_classes = labels.numpy().max() + 1
features_sort, _ = utils.sort_dataset(features.numpy(), labels.numpy(),
num_classes=num_classes, stack=False)
for i in range(num_classes):
for j in range(i, num_classes):
fig, ax = plt.subplots(ncols=1, nrows=1, figsize=(7, 5), dpi=250)
if i == j:
sim_mat = features_sort[i] @ features_sort[j].T
sim_mat = sim_mat[np.triu_indices(sim_mat.shape[0], k = 1)]
else:
sim_mat = (features_sort[i] @ features_sort[j].T).reshape(-1)
ax.hist(sim_mat, bins=40, color='red', alpha=0.5)
ax.set_xlabel("cosine similarity")
ax.set_ylabel("count")
ax.set_title(f"Class {i} vs. Class {j}")
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
fig.tight_layout()
file_name = os.path.join(hist_folder, f"hist_{i}v{j}")
fig.savefig(file_name)
plt.close()
print("Plot saved to: {}".format(file_name))
def plot_traintest(args, path_test):
"""Plot traintest loss. """
def process_df(data):
epochs = data['epoch'].ravel().max()
mean_, max_, min_ = [], [], []
for epoch in np.arange(epochs+1):
row = data[data['epoch'] == epoch].drop(columns=['step', 'discrimn_loss_e', 'compress_loss_e'])
mean_.append(row.mean())
max_.append(row.max())
min_.append(row.min())
return pd.DataFrame(mean_), pd.DataFrame(max_), pd.DataFrame(min_)
def moving_average(arr, size=(9, 9)):
assert len(size) == 2
mean_ = []
min_ = []
max_ = []
for i in range(len(arr)):
l, r = i-size[0], i+size[1]
l, r = np.max([l, 0]), r + 1 #adjust bounds
mean_.append(np.mean(arr[l:r]))
min_.append(np.amin(arr[l:r]))
max_.append(np.amax(arr[l:r]))
return mean_, min_, max_
path_train = os.path.join(args.model_dir, 'losses.csv')
path_test = os.path.join(args.model_dir, 'losses_test.csv')
df_train = pd.read_csv(path_train)
df_test = pd.read_csv(path_test)
df_train_mean, df_train_max, df_train_min = process_df(df_train)
df_test_mean, df_test_max, df_test_min = process_df(df_test)
train_dis_loss_mean = df_train_mean['discrimn_loss_t'].ravel()
train_com_loss_mean = df_train_mean['compress_loss_t'].ravel()
train_obj_loss_mean = train_dis_loss_mean - train_com_loss_mean
train_dis_loss_max = df_train_max['discrimn_loss_t'].ravel()
train_com_loss_max = df_train_max['compress_loss_t'].ravel()
train_obj_loss_max = train_dis_loss_max - train_com_loss_max
train_dis_loss_min = df_train_min['discrimn_loss_t'].ravel()
train_com_loss_min = df_train_min['compress_loss_t'].ravel()
train_obj_loss_min = train_dis_loss_min - train_com_loss_min
test_dis_loss_mean = df_test_mean['discrimn_loss_t'].ravel()
test_com_loss_mean = df_test_mean['compress_loss_t'].ravel()
test_obj_loss_mean = test_dis_loss_mean - test_com_loss_mean
test_dis_loss_max = df_test_max['discrimn_loss_t'].ravel()
test_com_loss_max = df_test_max['compress_loss_t'].ravel()
test_obj_loss_max = test_dis_loss_max - test_com_loss_max
test_dis_loss_min = df_test_min['discrimn_loss_t'].ravel()
test_com_loss_min = df_test_min['compress_loss_t'].ravel()
test_obj_loss_min = test_dis_loss_min - test_com_loss_min
train_obj_loss_mean = moving_average(train_obj_loss_mean)[0]
test_obj_loss_mean = moving_average(test_obj_loss_mean)[0]
train_dis_loss_mean = moving_average(train_dis_loss_mean)[0]
test_dis_loss_mean = moving_average(test_dis_loss_mean)[0]
train_com_loss_mean = moving_average(train_com_loss_mean)[0]
test_com_loss_mean = moving_average(test_com_loss_mean)[0]
plt.rc('text', usetex=True)
plt.rcParams['font.family'] = 'serif'
plt.rcParams['font.serif'] = ['Times New Roman'] #+ plt.rcParams['font.serif']
fig, ax = plt.subplots(1, 1, figsize=(7, 5), sharey=True, sharex=True, dpi=400)
num_iter = np.arange(len(train_obj_loss_mean))
ax.plot(num_iter, train_obj_loss_mean, label=r'$\Delta R$ (train)',
color='green', linewidth=1.0, alpha=0.8)
ax.plot(num_iter, test_obj_loss_mean, label='$\Delta R$ (test)',
color='green', linewidth=1.0, alpha=0.8, linestyle='--')
ax.plot(num_iter, train_dis_loss_mean, label='$R$ (train)',
color='royalblue', linewidth=1.0, alpha=0.8)
ax.plot(num_iter, test_dis_loss_mean, label='$R$ (test)',
color='royalblue', linewidth=1.0, alpha=0.8, linestyle='--')
ax.plot(num_iter, train_com_loss_mean, label='$R^c$ (train)',
color='coral', linewidth=1.0, alpha=0.8)
ax.plot(num_iter, test_com_loss_mean, label='$R^c$ (test)',
color='coral', linewidth=1.0, alpha=0.8, linestyle='--')
ax.set_ylabel('Loss', fontsize=14)
ax.set_xlabel('Epoch', fontsize=14)
ax.legend(loc='lower right', frameon=True, fancybox=True, prop={"size": 12}, ncol=3, framealpha=0.5)
ax.set_ylim(0, 80)
[tick.label.set_fontsize(14) for tick in ax.xaxis.get_major_ticks()]
[tick.label.set_fontsize(14) for tick in ax.yaxis.get_major_ticks()]
fig.tight_layout()
save_dir = os.path.join(args.model_dir, 'figures', "traintest")
if not os.path.exists(save_dir):
os.makedirs(save_dir)
file_name = os.path.join(save_dir, f"loss_traintest.png")
fig.savefig(file_name, dpi=400)
print("Plot saved to: {}".format(file_name))
file_name = os.path.join(save_dir, f"loss_traintest.pdf")
fig.savefig(file_name, dpi=400)
print("Plot saved to: {}".format(file_name))
plt.close()
def plot_nearest_component_supervised(args, features, labels, epoch, trainset):
"""Find corresponding images to the nearests component. """
## perform PCA on features
features_sort, _ = utils.sort_dataset(features.numpy(), labels.numpy(),
num_classes=trainset.num_classes, stack=False)
data_sort, _ = utils.sort_dataset(trainset.data, labels.numpy(),
num_classes=trainset.num_classes, stack=False)
nearest_data = []
for c in range(trainset.num_classes):
pca = TruncatedSVD(n_components=10, random_state=10).fit(features_sort[c])
proj = features_sort[c] @ pca.components_.T
img_idx = np.argmax(np.abs(proj), axis=0)
nearest_data.append(np.array(data_sort[c])[img_idx])
fig, ax = plt.subplots(ncols=10, nrows=10, figsize=(10, 10))
for r in range(10):
for c in range(10):
ax[r, c].imshow(nearest_data[r][c])
ax[r, c].set_xticks([])
ax[r, c].set_yticks([])
ax[r, c].spines['top'].set_visible(False)
ax[r, c].spines['right'].set_visible(False)
ax[r, c].spines['bottom'].set_linewidth(False)
ax[r, c].spines['left'].set_linewidth(False)
if c == 0:
ax[r, c].set_ylabel(f"comp {r}")
## save
save_dir = os.path.join(args.model_dir, 'figures', 'nearcomp_sup')
if not os.path.exists(save_dir):
os.makedirs(save_dir)
file_name = os.path.join(save_dir, f"nearest_data.png")
fig.savefig(file_name)
print("Plot saved to: {}".format(file_name))
file_name = os.path.join(save_dir, f"nearest_data.pdf")
fig.savefig(file_name)
print("Plot saved to: {}".format(file_name))
plt.close()
def plot_nearest_component_unsupervised(args, features, labels, epoch, trainset):
"""Find corresponding images to the nearests component. """
save_dir = os.path.join(args.model_dir, 'figures', 'nearcomp_unsup')
if not os.path.exists(save_dir):
os.makedirs(save_dir)
feature_dim = features.shape[1]
pca = TruncatedSVD(n_components=feature_dim-1, random_state=10).fit(features)
for j, comp in enumerate(pca.components_):
proj = (features @ comp.T).numpy()
img_idx = np.argsort(np.abs(proj), axis=0)[::-1][:10]
nearest_vals = proj[img_idx]
nearest_data = trainset.data[img_idx]
fig, ax = plt.subplots(ncols=5, nrows=2, figsize=(5, 2))
i = 0
for r in range(2):
for c in range(5):
ax[r, c].imshow(nearest_data[i])
ax[r, c].set_xticks([])
ax[r, c].set_yticks([])
ax[r, c].spines['top'].set_visible(False)
ax[r, c].spines['right'].set_visible(False)
ax[r, c].spines['bottom'].set_linewidth(False)
ax[r, c].spines['left'].set_linewidth(False)
i+= 1
file_name = os.path.join(save_dir, f"nearest_comp{j}.png")
fig.savefig(file_name)
print("Plot saved to: {}".format(file_name))
plt.close()
def plot_nearest_component_class(args, features, labels, epoch, trainset):
"""Find corresponding images to the nearests component per class. """
features_sort, _ = utils.sort_dataset(features.numpy(), labels.numpy(),
num_classes=trainset.num_classes, stack=False)
data_sort, _ = utils.sort_dataset(trainset.data, labels.numpy(),
num_classes=trainset.num_classes, stack=False)
for class_ in range(trainset.num_classes):
nearest_data = []
nearest_val = []
pca = TruncatedSVD(n_components=10, random_state=10).fit(features_sort[class_])
for j in range(8):
proj = features_sort[class_] @ pca.components_.T[:, j]
img_idx = np.argsort(np.abs(proj), axis=0)[::-1][:10]
nearest_val.append(proj[img_idx])
nearest_data.append(np.array(data_sort[class_])[img_idx])
fig, ax = plt.subplots(ncols=10, nrows=8, figsize=(10, 10))
for r in range(8):
for c in range(10):
ax[r, c].imshow(nearest_data[r][c])
ax[r, c].set_xticks([])
ax[r, c].set_yticks([])
ax[r, c].spines['top'].set_visible(False)
ax[r, c].spines['right'].set_visible(False)
ax[r, c].spines['bottom'].set_linewidth(False)
ax[r, c].spines['left'].set_linewidth(False)
ax[r, c].set_xlabel(f"proj: {nearest_val[r][c]:.2f}")
if c == 0:
ax[r, c].set_ylabel(f"comp {r}")
fig.tight_layout()
## save
save_dir = os.path.join(args.model_dir, 'figures', 'nearcomp_class')
if not os.path.exists(save_dir):
os.makedirs(save_dir)
file_name = os.path.join(save_dir, f"nearest_class{class_}.png")
fig.savefig(file_name)
print("Plot saved to: {}".format(file_name))
file_name = os.path.join(save_dir, f"nearest_class{class_}.pdf")
fig.savefig(file_name)
print("Plot saved to: {}".format(file_name))
plt.close()
def plot_accuracy(args, path):
"""Plot train and test accuracy. """
def moving_average(arr, size=(9, 9)):
assert len(size) == 2
mean_ = []
min_ = []
max_ = []
for i in range(len(arr)):
l, r = i-size[0], i+size[1]
l, r = np.max([l, 0]), r + 1 #adjust bounds
mean_.append(np.mean(arr[l:r]))
min_.append(np.amin(arr[l:r]))
max_.append(np.amax(arr[l:r]))
return mean_, min_, max_
df = pd.read_csv(path)
acc_train = df['acc_train'].ravel()
acc_test = df['acc_test'].ravel()
epochs = np.arange(len(df))
acc_train, _, _ = moving_average(acc_train)
acc_test, _, _ = moving_average(acc_test)
fig, ax = plt.subplots(1, 1, figsize=(7, 5), dpi=400)
ax.plot(epochs, acc_train, label='train', alpha=0.6, color='lightcoral')
ax.plot(epochs, acc_test, label='test', alpha=0.6, color='cornflowerblue')
ax.legend(loc='lower right', frameon=True, fancybox=True, prop={"size": 14}, ncol=2, framealpha=0.5)
ax.set_xlabel("epochs", fontsize=14)
ax.set_ylabel("accuracy", fontsize=14)
[tick.label.set_fontsize(14) for tick in ax.xaxis.get_major_ticks()]
[tick.label.set_fontsize(14) for tick in ax.yaxis.get_major_ticks()]
fig.tight_layout()
## save
save_dir = os.path.join(args.model_dir, 'figures', 'acc')
if not os.path.exists(save_dir):
os.makedirs(save_dir)
file_name = os.path.join(save_dir, f"acc_traintest.png")
fig.savefig(file_name)
print("Plot saved to: {}".format(file_name))
file_name = os.path.join(save_dir, f"acc_traintest.pdf")
fig.savefig(file_name)
print("Plot saved to: {}".format(file_name))
plt.close()
def plot_heatmap(args, features, labels, epoch):
"""Plot heatmap of cosine simliarity for all features. """
num_classes = trainset.num_classes
features_sort, _ = utils.sort_dataset(features.numpy(), labels.numpy(),
num_classes=num_classes, stack=False)
features_sort_ = np.vstack(features_sort)
sim_mat = np.abs(features_sort_ @ features_sort_.T)
plt.rc('text', usetex=False)
plt.rcParams['font.family'] = 'serif'
plt.rcParams['font.serif'] = ['Times New Roman'] #+ plt.rcParams['font.serif']
fig, ax = plt.subplots(figsize=(7, 5), sharey=True, sharex=True, dpi=400)
im = ax.imshow(sim_mat, cmap='Blues')
fig.colorbar(im, pad=0.02, drawedges=0, ticks=[0, 0.5, 1])
ax.set_xticks(np.linspace(0, 50000, 6))
ax.set_yticks(np.linspace(0, 50000, 6))
[tick.label.set_fontsize(10) for tick in ax.xaxis.get_major_ticks()]
[tick.label.set_fontsize(10) for tick in ax.yaxis.get_major_ticks()]
fig.tight_layout()
save_dir = os.path.join(args.model_dir, 'figures', 'heatmaps')
if not os.path.exists(save_dir):
os.makedirs(save_dir)
file_name = os.path.join(save_dir, f"heatmat_epoch{epoch}.png")
fig.savefig(file_name)
print("Plot saved to: {}".format(file_name))
file_name = os.path.join(save_dir, f"heatmat_epoch{epoch}.pdf")
fig.savefig(file_name)
print("Plot saved to: {}".format(file_name))
plt.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Ploting')
parser.add_argument('--model_dir', type=str, help='base directory for saving PyTorch model.')
parser.add_argument('--loss', help='plot losses from training', action='store_true')
parser.add_argument('--loss_log', help='plot losses from training', action='store_true')
parser.add_argument('--hist', help='plot histogram of cosine similarity of features', action='store_true')
parser.add_argument('--pca', help='plot PCA singular values of feautres', action='store_true')
parser.add_argument('--pca_epoch', help='plot PCA singular for different epochs', action='store_true')
parser.add_argument('--nearcomp_sup', help='plot nearest component', action='store_true')
parser.add_argument('--nearcomp_unsup', help='plot nearest component', action='store_true')
parser.add_argument('--nearcomp_class', help='plot nearest component', action='store_true')
parser.add_argument('--acc', help='plot accuracy over epochs', action='store_true')
parser.add_argument('--traintest', help='plot train and test loss comparison plot', action='store_true')
parser.add_argument('--heat', help='plot heatmap of cosine similarity between samples', action='store_true')
parser.add_argument('--epoch', type=int, default=None, help='which epoch for evaluation')
parser.add_argument('--n', type=int, default=1000, help='number of samples')
parser.add_argument('--comp', type=int, default=30, help='number of components for PCA (default: 30)')
parser.add_argument('--class_', type=int, default=None, help='which class for PCA (default: None)')
args = parser.parse_args()
if args.loss:
plot_loss(args)
if args.loss_log:
plot_loss_log(args)
if args.pca_epoch:
plot_pca_epoch(args)
if args.traintest:
path = os.path.join(args.model_dir, 'losses_test.csv')
if not os.path.exists(path):
gen_testloss(args)
plot_traintest(args, path)
if args.acc:
path = os.path.join(args.model_dir, 'accuracy.csv')
if not os.path.exists(path):
gen_training_accuracy(args)
plot_accuracy(args, path)
if args.pca or args.hist or args.heat or args.nearcomp_sup or args.nearcomp_unsup or args.nearcomp_class:
## load data and model
params = utils.load_params(args.model_dir)
net, epoch = tf.load_checkpoint(args.model_dir, args.epoch, eval_=True)
transforms = tf.load_transforms('test')
trainset = tf.load_trainset(params['data'], transforms)
if 'lcr' in params.keys(): # supervised corruption case
trainset = tf.corrupt_labels(params['corrupt'])(trainset, params['lcr'], params['lcs'])
trainloader = DataLoader(trainset, batch_size=200, num_workers=4)
features, labels = tf.get_features(net, trainloader)
if args.pca:
plot_pca(args, features, labels, epoch)
if args.nearcomp_sup:
plot_nearest_component_supervised(args, features, labels, epoch, trainset)
if args.nearcomp_unsup:
plot_nearest_component_unsupervised(args, features, labels, epoch, trainset)
if args.nearcomp_class:
plot_nearest_component_class(args, features, labels, epoch, trainset)
if args.hist:
plot_hist(args, features, labels, epoch)
if args.heat:
plot_heatmap(args, features, labels, epoch)