@@ -13,26 +13,9 @@ def conv_res_part_P(P_t,f,is_training,var_name):
13
13
#############stage 1
14
14
X = tf .contrib .layers .flatten (P_t )
15
15
16
- #X=tf.gather(X,indices=[0,1,2,3,4,5,6,7,8,9],axis=1)
17
-
18
- #X = tf.layers.conv1d(S_t, filters=6, kernel_size=3, strides=1, padding='same',
19
- # kernel_initializer=tf.contrib.layers.xavier_initializer(), activation=None,
20
- # name='Conv00' + var_name, data_format='channels_last', reuse=tf.AUTO_REUSE)
21
-
22
- #X=tf.contrib.layers.fully_connected(inputs=X, num_outputs=1, activation_fn=tf.nn.relu,
23
- # weights_initializer=tf.contrib.layers.xavier_initializer(),
24
- # biases_initializer=tf.zeros_initializer())
25
-
26
- #X = tf.contrib.layers.fully_connected(inputs=X, num_outputs=4, activation_fn=tf.nn.relu,
27
- # weights_initializer=tf.contrib.layers.xavier_initializer(),
28
- # biases_initializer=tf.zeros_initializer())
29
16
30
17
print ('conv2 out P' , X )
31
- #X = tf.layers.conv1d(X, filters=12, kernel_size=2, strides=s0, padding='valid',
32
- # kernel_initializer=tf.contrib.layers.xavier_initializer(), activation=None,
33
- # name='Conv3' + var_name, data_format='channels_last', reuse=tf.AUTO_REUSE)
34
18
35
- #X = tf.nn.relu(X)
36
19
37
20
return X
38
21
0 commit comments