forked from VDIGPKU/CBNet_caffe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcollect_and_distribute_fpn_rpn_proposals.py
113 lines (100 loc) · 4.77 KB
/
collect_and_distribute_fpn_rpn_proposals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Copyright (c) 2017-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
from detectron.core.config import cfg
from detectron.datasets import json_dataset
from detectron.datasets import roidb as roidb_utils
import detectron.modeling.FPN as fpn
import detectron.roi_data.fast_rcnn as fast_rcnn_roi_data
import detectron.utils.blob as blob_utils
class CollectAndDistributeFpnRpnProposalsOp(object):
def __init__(self, train):
self._train = train
def forward(self, inputs, outputs):
"""See modeling.detector.CollectAndDistributeFpnRpnProposals for
inputs/outputs documentation.
"""
# inputs is
# [rpn_rois_fpn2, ..., rpn_rois_fpn6,
# rpn_roi_probs_fpn2, ..., rpn_roi_probs_fpn6]
# If training with Faster R-CNN, then inputs will additionally include
# + [roidb, im_info]
rois = collect(inputs, self._train)
if self._train:
# During training we reuse the data loader code. We populate roidb
# entries on the fly using the rois generated by RPN.
# im_info: [[im_height, im_width, im_scale], ...]
im_info = inputs[-1].data
im_scales = im_info[:, 2]
roidb = blob_utils.deserialize(inputs[-2].data)
# For historical consistency with the original Faster R-CNN
# implementation we are *not* filtering crowd proposals.
# This choice should be investigated in the future (it likely does
# not matter).
json_dataset.add_proposals(roidb, rois, im_scales, crowd_thresh=0)
roidb_utils.add_bbox_regression_targets(roidb)
# Compute training labels for the RPN proposals; also handles
# distributing the proposals over FPN levels
output_blob_names = fast_rcnn_roi_data.get_fast_rcnn_blob_names()
blobs = {k: [] for k in output_blob_names}
fast_rcnn_roi_data.add_fast_rcnn_blobs(blobs, im_scales, roidb)
for i, k in enumerate(output_blob_names):
blob_utils.py_op_copy_blob(blobs[k], outputs[i])
else:
# For inference we have a special code path that avoids some data
# loader overhead
distribute(rois, None, outputs, self._train)
def collect(inputs, is_training):
cfg_key = 'TRAIN' if is_training else 'TEST'
post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N
k_max = cfg.FPN.RPN_MAX_LEVEL
k_min = cfg.FPN.RPN_MIN_LEVEL
num_lvls = k_max - k_min + 1
roi_inputs = inputs[:num_lvls]
score_inputs = inputs[num_lvls:]
if is_training:
score_inputs = score_inputs[:-2]
# rois are in [[batch_idx, x0, y0, x1, y2], ...] format
# Combine predictions across all levels and retain the top scoring
rois = np.concatenate([blob.data for blob in roi_inputs])
scores = np.concatenate([blob.data for blob in score_inputs]).squeeze()
inds = np.argsort(-scores)[:post_nms_topN]
rois = rois[inds, :]
return rois
def distribute(rois, label_blobs, outputs, train):
"""To understand the output blob order see return value of
detectron.roi_data.fast_rcnn.get_fast_rcnn_blob_names(is_training=False)
"""
lvl_min = cfg.FPN.ROI_MIN_LEVEL
lvl_max = cfg.FPN.ROI_MAX_LEVEL
lvls = fpn.map_rois_to_fpn_levels(rois[:, 1:5], lvl_min, lvl_max)
outputs[0].reshape(rois.shape)
outputs[0].data[...] = rois
# Create new roi blobs for each FPN level
# (See: modeling.FPN.add_multilevel_roi_blobs which is similar but annoying
# to generalize to support this particular case.)
rois_idx_order = np.empty((0, ))
for output_idx, lvl in enumerate(range(lvl_min, lvl_max + 1)):
idx_lvl = np.where(lvls == lvl)[0]
blob_roi_level = rois[idx_lvl, :]
outputs[output_idx + 1].reshape(blob_roi_level.shape)
outputs[output_idx + 1].data[...] = blob_roi_level
rois_idx_order = np.concatenate((rois_idx_order, idx_lvl))
rois_idx_restore = np.argsort(rois_idx_order)
blob_utils.py_op_copy_blob(rois_idx_restore.astype(np.int32), outputs[-1])