-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgradio_web_server.py
757 lines (664 loc) · 26 KB
/
gradio_web_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
import argparse
import datetime
import json
import os
import time
import hashlib
import re
import threading
import random
from filelock import FileLock
from io import BytesIO
from PIL import Image, ImageDraw, ImageFont
import gradio as gr
import requests
from constants import (
CONTROLLER_URL,
WORKER_HOST,
GRADIO_HOST,
GRADIO_PORT,
LOG_LEVEL
)
from utils import (
build_logger,
server_error_msg,
load_image_from_base64,
get_log_filename,
)
from conversation import Conversation
logger = build_logger("gradio_web_server", "gradio_web_server.log")
headers = {"User-Agent": "VLM Client"}
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)
logger.setLevel(LOG_LEVEL)
def write2file(path, content):
lock = FileLock(f"{path}.lock")
with lock:
with open(path, "a") as fout:
fout.write(content)
def sort_models(models):
def custom_sort_key(model_name):
if model_name == "InternVL-Chat-V1-5":
return (1, model_name)
elif model_name.startswith("InternVL-Chat-V1-5-"):
return (1, model_name)
else:
return (0, model_name)
models.sort(key=custom_sort_key, reverse=True)
try:
first_three = models[:4]
random.shuffle(first_three)
models[:4] = first_three
except:
pass
return models
def fetch_worker_status(worker_name, timeout=5):
try:
r = requests.post(worker_name + '/worker_get_status', timeout=timeout)
r.raise_for_status()
return r.json()
except requests.exceptions.RequestException as e:
logger.error(f'Failed to fetch status for worker: {worker_name}, error: {e}')
except ValueError as e:
logger.error(f'Failed to parse worker status JSON: {worker_name}, error: {e}')
return None
def get_model_list():
logger.info(f"Call `get_model_list`")
logger.info(f"Fetching model list from controller at {args.controller_url}")
for attempt in range(10):
ret = requests.post(args.controller_url + "/refresh_all_workers")
logger.info(f"status_code from `get_model_list`: {ret.status_code}")
logger.info(f"Refresh workers response: {ret.text}")
if ret.status_code != 200:
logger.warning(f"Failed to refresh workers, status code: {ret.status_code}")
time.sleep(3)
continue
ret = requests.post(args.controller_url + "/list_models")
logger.info(f"status_code from `list_models`: {ret.status_code}")
logger.info(f"List models response: {ret.text}")
if ret.status_code != 200:
logger.warning(f"Failed to list models, status code: {ret.status_code}")
time.sleep(3)
continue
models = ret.json()["models"]
logger.info(f"Received models: {models}")
if not models:
logger.warning("Received empty model list, retrying...")
time.sleep(3)
continue
models = sort_models(models)
logger.info(f"Models (from {args.controller_url}): {models}")
return models
logger.error("Failed to get model list after multiple attempts")
return ["No models available"]
def init_state(state=None):
if state is not None:
del state
return Conversation()
def find_bounding_boxes(state, response):
pattern = re.compile(r"<ref>\s*(.*?)\s*</ref>\s*<box>\s*(\[\[.*?\]\])\s*</box>")
matches = pattern.findall(response)
results = []
for match in matches:
results.append((match[0], eval(match[1])))
returned_image = None
latest_image = state.get_images(source=state.USER)[-1]
returned_image = latest_image.copy()
width, height = returned_image.size
draw = ImageDraw.Draw(returned_image)
font = ImageFont.truetype("assets/BMNF-Regular.ttf", int(20 * line_width / 2))
for result in results:
line_width = max(1, int(min(width, height) / 200))
random_color = (
random.randint(0, 128),
random.randint(0, 128),
random.randint(0, 128),
)
category_name, coordinates = result
coordinates = [
(
float(x[0]) / 1000,
float(x[1]) / 1000,
float(x[2]) / 1000,
float(x[3]) / 1000,
)
for x in coordinates
]
coordinates = [
(
int(x[0] * width),
int(x[1] * height),
int(x[2] * width),
int(x[3] * height),
)
for x in coordinates
]
for box in coordinates:
draw.rectangle(box, outline=random_color, width=line_width)
text_size = font.getbbox(category_name)
text_width, text_height = (
text_size[2] - text_size[0],
text_size[3] - text_size[1],
)
text_position = (box[0], max(0, box[1] - text_height))
draw.rectangle(
[
text_position,
(text_position[0] + text_width, text_position[1] + text_height),
],
fill=random_color,
)
draw.text(text_position, category_name, fill="white", font=font)
return returned_image if len(matches) > 0 else None
def query_image_generation(response, sd_worker_url, timeout=15):
if not sd_worker_url:
return None
sd_worker_url = f"{sd_worker_url}/generate_image/"
pattern = r"```drawing-instruction\n(.*?)\n```"
match = re.search(pattern, response, re.DOTALL)
if match:
payload = {"caption": match.group(1)}
print("drawing-instruction:", payload)
response = requests.post(sd_worker_url, json=payload, timeout=timeout)
response.raise_for_status()
image = Image.open(BytesIO(response.content))
return image
else:
return None
def load_demo(url_params, request: gr.Request = None):
if request:
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
dropdown_update = gr.Dropdown(visible=True)
models = get_model_list()
if "model" in url_params:
model = url_params["model"]
if model in models:
dropdown_update = gr.Dropdown(value=model, visible=True)
state = init_state()
return state, dropdown_update
def load_demo_refresh_model_list(request: gr.Request = None):
if request:
logger.info(f"load_demo. ip: {request.client.host}")
models = get_model_list()
state = init_state()
dropdown_update = gr.Dropdown(
choices=models, value=models[0] if len(models) > 0 else ""
)
return state, dropdown_update
def vote_last_response(state, liked, model_selector, request: gr.Request):
conv_data = {
"tstamp": round(time.time(), 4),
"like": liked,
"model": model_selector,
"state": state.dict(),
"ip": request.client.host,
}
write2file(get_log_filename(), json.dumps(conv_data) + "\n")
def upvote_last_response(state, model_selector, request: gr.Request):
logger.info(f"upvote. ip: {request.client.host}")
vote_last_response(state, True, model_selector, request)
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (textbox,) + (disable_btn,) * 3
def downvote_last_response(state, model_selector, request: gr.Request):
logger.info(f"downvote. ip: {request.client.host}")
vote_last_response(state, False, model_selector, request)
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (textbox,) + (disable_btn,) * 3
def stop_generation(state):
state.skip_next = True
return (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=True),
) + (enable_btn,) * 5 + (disable_btn,)
def vote_selected_response(
state, model_selector, request: gr.Request, data: gr.LikeData
):
logger.info(
f"Vote: {data.liked}, index: {data.index}, value: {data.value} , ip: {request.client.host}"
)
conv_data = {
"tstamp": round(time.time(), 4),
"like": data.liked,
"index": data.index,
"model": model_selector,
"state": state.dict(),
"ip": request.client.host,
}
write2file(get_log_filename(), json.dumps(conv_data) + "\n")
return
def flag_last_response(state, model_selector, request: gr.Request):
logger.info(f"flag. ip: {request.client.host}")
vote_last_response(state, "flag", model_selector, request)
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (textbox,) + (disable_btn,) * 3
def regenerate(state, image_process_mode, request: gr.Request):
logger.info(f"regenerate. ip: {request.client.host}")
state.update_message(Conversation.ASSISTANT, None, -1)
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
state.skip_next = False
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (state, state.to_gradio_chatbot(), textbox) + (disable_btn,) * 5
def clear_history(request: gr.Request):
logger.info(f"clear_history. ip: {request.client.host}")
state = init_state()
textbox = gr.MultimodalTextbox(value=None, interactive=True)
return (state, state.to_gradio_chatbot(), textbox) + (disable_btn,) * 5
def change_system_prompt(state, system_prompt, request: gr.Request):
logger.info(f"Change system prompt. ip: {request.client.host}")
state.set_system_message(system_prompt)
return state
def add_text(state, message, system_prompt, model_selector, request: gr.Request):
print(f"state: {state}")
if not state:
state = init_state()
images = message.get("files", [])
text = message.get("text", "").strip()
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
textbox = gr.MultimodalTextbox(value=None, interactive=False)
if len(text) <= 0 and len(images) == 0:
state.skip_next = True
return (state, state.to_gradio_chatbot(), textbox) + (no_change_btn,) * 6
images = [Image.open(path).convert("RGB") for path in images]
if len(images) > 0 and len(state.get_images(source=state.USER)) > 0:
state = init_state(state)
state.set_system_message(system_prompt)
state.append_message(Conversation.USER, text, images)
state.skip_next = False
return (state, state.to_gradio_chatbot(), textbox, model_selector) + (disable_btn,) * 6
def http_bot(
state,
model_selector,
temperature,
top_p,
repetition_penalty,
max_new_tokens,
max_input_tiles,
request: gr.Request,
):
logger.info(f"http_bot. ip: {request.client.host}")
start_tstamp = time.time()
model_name = model_selector
if hasattr(state, "skip_next") and state.skip_next:
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=False),
) + (disable_btn,) * 5 + (enable_btn,)
return
controller_url = args.controller_url
ret = requests.post(
controller_url + "/get_worker_address", json={"model": model_name}
)
worker_addr = ret.json()["address"]
logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}")
if worker_addr == "":
state.update_message(Conversation.ASSISTANT, server_error_msg)
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=False),
) + (disable_btn,) * 6
return
all_images = state.get_images(source=state.USER)
all_image_paths = [state.save_image(image) for image in all_images]
pload = {
"model": model_name,
"prompt": state.get_prompt(),
"temperature": float(temperature),
"top_p": float(top_p),
"max_new_tokens": max_new_tokens,
"max_input_tiles": max_input_tiles,
"repetition_penalty": repetition_penalty,
"images": f"List of {len(all_images)} images: {all_image_paths}",
}
logger.info(f"==== request ====\n{pload}")
pload.pop("images")
pload["prompt"] = state.get_prompt(inlude_image=True)
state.append_message(Conversation.ASSISTANT, state.streaming_placeholder)
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=False),
) + (disable_btn,) * 6
try:
response = requests.post(
worker_addr + "/worker_generate_stream",
headers=headers,
json=pload,
stream=True,
timeout=20,
)
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode())
if data["error_code"] == 0:
if "text" in data:
output = data["text"].strip()
output += state.streaming_placeholder
image = None
if "image" in data:
image = load_image_from_base64(data["image"])
_ = state.save_image(image)
state.update_message(Conversation.ASSISTANT, output, image)
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=False),
) + (disable_btn,) * 5 + (enable_btn,) # Enable stop button
else:
output = (
f"**{data['text']}**" + f" (error_code: {data['error_code']})"
)
state.update_message(Conversation.ASSISTANT, output, None)
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=True),
) + (enable_btn,) * 5 + (disable_btn,) # Disable stop button
return
except requests.exceptions.RequestException as e:
state.update_message(Conversation.ASSISTANT, server_error_msg, None)
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=True),
) + (enable_btn,) * 5 + (disable_btn,) # Disable stop button
return
ai_response = state.return_last_message()
if "<ref>" in ai_response:
returned_image = find_bounding_boxes(state, ai_response)
returned_image = [returned_image] if returned_image else []
state.update_message(Conversation.ASSISTANT, ai_response, returned_image)
if "```drawing-instruction" in ai_response:
returned_image = query_image_generation(
ai_response, sd_worker_url=sd_worker_url
)
returned_image = [returned_image] if returned_image else []
state.update_message(Conversation.ASSISTANT, ai_response, returned_image)
state.end_of_current_turn()
yield (
state,
state.to_gradio_chatbot(),
gr.MultimodalTextbox(interactive=True),
) + (enable_btn,) * 5 + (disable_btn,) # Disable stop button at the end
finish_tstamp = time.time()
logger.info(f"{output}")
data = {
"tstamp": round(finish_tstamp, 4),
"like": None,
"model": model_name,
"start": round(start_tstamp, 4),
"finish": round(finish_tstamp, 4),
"state": state.dict(),
"images": all_image_paths,
"ip": request.client.host,
}
write2file(get_log_filename(), json.dumps(data) + "\n")
title_html = """
<h2> <span class="gradient-text" id="text">VLM UI</span></h2>
<a href="https://smcleod.net">[🧑💻 smcleod.net]</a>
"""
learn_more_markdown = """
### Acknowledgement
This web app borrows from both LLaVA and InternVLM demos. Thanks for their awesome work!
"""
block_css = """
.gradio-container {margin: 0.1% 1% 0 1% !important; max-width: 98% !important;};
#buttons button {
min-width: min(120px,100%);
}
.gradient-text {
font-size: 26px;
width: auto;
font-weight: bold;
background: linear-gradient(45deg, red, orange, yellow, green, blue, indigo, violet);
background-clip: text;
-webkit-background-clip: text;
color: transparent;
}
.plain-text {
font-size: 20px;
width: auto;
font-weight: bold;
font-family: 'helvetica neue';
}
"""
class VLMInterface:
def __init__(self):
self.model_selector = None
def periodic_refresh_models(self):
while True:
if self.model_selector is None or self.model_selector.choices == ["No models available"]:
time.sleep(10)
models = get_model_list()
if models and models != ["No models available"] and self.model_selector is not None:
self.model_selector.choices = models
self.model_selector.value = models[0]
def build_demo(self, embed_mode):
textbox = gr.MultimodalTextbox(
interactive=True,
file_types=["image", "video"],
placeholder="Enter message or upload file...",
show_label=False,
)
with gr.Blocks(
title="VLM UI",
# theme=gr.themes.Default(),
# theme='gstaff/xkcd',
theme='bethecloud/storj_theme',
css=block_css,
) as gradio_app:
models = get_model_list()
state = gr.State(init_state())
if not embed_mode:
gr.HTML(title_html)
with gr.Row():
with gr.Column(scale=2):
with gr.Row(elem_id="model_selector_row"):
model_selector = gr.Dropdown(
choices=models if models else ["No models available"],
value=models[0] if models else "No models available",
interactive=True,
show_label=False,
container=False,
)
with gr.Accordion("System Prompt", open=True) as system_prompt_row:
system_prompt = gr.Textbox(
value=os.getenv(
"SYSTEM_MESSAGE",
"You are a multimodal large language model with the ability to understand images. Answer questions concisely.",
),
label="System Prompt",
lines=5,
container=False,
interactive=True,
)
with gr.Accordion("Parameters", open=True) as parameter_row:
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.2,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
interactive=True,
label="Top P",
)
repetition_penalty = gr.Slider(
minimum=1.0,
maximum=1.5,
value=1.1,
step=0.02,
interactive=True,
label="Repetition penalty",
)
max_output_tokens = gr.Slider(
minimum=128,
maximum=8192,
value=2048,
step=64,
interactive=True,
label="Max output tokens",
)
max_input_tiles = gr.Slider(
minimum=1,
maximum=32,
value=12,
step=1,
interactive=True,
label="Max input tiles (control the image size)",
)
with gr.Column(scale=8):
chatbot = gr.Chatbot(
elem_id="chatbot",
label="InternVL2",
height=920,
show_copy_button=True,
show_share_button=True,
avatar_images=[
"assets/human.png",
"assets/assistant.png",
],
bubble_full_width=False,
)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary")
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="👍 Upvote", interactive=False)
downvote_btn = gr.Button(value="👎 Downvote", interactive=False)
stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False)
clear_btn = gr.Button(value="🗑️ Clear", interactive=False)
if not embed_mode:
gr.Markdown(learn_more_markdown)
url_params = gr.JSON(visible=False)
# Register listeners
btn_list = [upvote_btn, downvote_btn, regenerate_btn, clear_btn, stop_btn]
upvote_btn.click(
upvote_last_response,
[state, model_selector],
[textbox, upvote_btn, downvote_btn],
)
downvote_btn.click(
downvote_last_response,
[state, model_selector],
[textbox, upvote_btn, downvote_btn],
)
chatbot.like(
vote_selected_response,
[state, model_selector],
[],
)
# Define the http_bot event
http_bot_event = textbox.submit(
add_text,
[state, textbox, system_prompt, model_selector],
[state, chatbot, textbox, model_selector] + btn_list,
).then(
http_bot,
[
state,
model_selector,
temperature,
top_p,
repetition_penalty,
max_output_tokens,
max_input_tiles,
],
[state, chatbot, textbox] + btn_list,
)
regenerate_btn.click(
regenerate,
[state, system_prompt],
[state, chatbot, textbox] + btn_list,
).then(
http_bot,
[
state,
model_selector,
temperature,
top_p,
repetition_penalty,
max_output_tokens,
max_input_tiles,
],
[state, chatbot, textbox] + btn_list,
)
clear_btn.click(clear_history, None, [state, chatbot, textbox] + btn_list)
submit_btn.click(
add_text,
[state, textbox, system_prompt, model_selector],
[state, chatbot, textbox, model_selector] + btn_list,
).then(
http_bot,
[
state,
model_selector,
temperature,
top_p,
repetition_penalty,
max_output_tokens,
max_input_tiles,
],
[state, chatbot, textbox] + btn_list,
)
stop_btn.click(
# FIXME: this just causes the webui to stop, it doesn't tell the worker to stop - I need to fix that
stop_generation,
inputs=[state],
outputs=[state, chatbot, textbox] + btn_list,
cancels=[http_bot_event] # This cancels the running http_bot event
)
# Start the periodic refresh thread
threading.Thread(target=self.periodic_refresh_models, daemon=True).start()
return gradio_app
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default=GRADIO_HOST)
parser.add_argument("--port", type=int, default=GRADIO_PORT)
parser.add_argument(
"--controller-url",
type=str,
default=CONTROLLER_URL,
)
parser.add_argument("--concurrency-count", type=int, default=10)
parser.add_argument(
"--model-list-mode", type=str, default="reload", choices=["once", "reload"]
)
parser.add_argument("--sd-worker-url", type=str, default=None)
parser.add_argument("--share", action="store_true")
parser.add_argument("--moderate", action="store_true")
parser.add_argument("--embed", action="store_true")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--worker-ip", type=str, default=WORKER_HOST)
args = parser.parse_args()
logger.info(f"args: {args}")
if not args.controller_url:
args.controller_url = os.environ.get("CONTROLLER_URL", 'http://0.0.0.0:21001')
if not args.controller_url:
raise ValueError("controller-url is required.")
if not args.worker_ip:
args.worker_ip = os.environ.get("WORKER_HOST", WORKER_HOST)
sd_worker_url = args.sd_worker_url
logger.info(args)
vlm_interface = VLMInterface()
app = vlm_interface.build_demo(args.embed)
app.queue(api_open=False).launch(
server_name=args.host,
server_port=args.port,
share=args.share,
max_threads=args.concurrency_count,
)