-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathAssignment1.m
660 lines (518 loc) · 20.7 KB
/
Assignment1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
% Image and Visual Computing Assignment 1: Face Detection-Recognition
%==========================================================================
% In this assignment, you are expected to use the previous learned method
% to cope with face detection problem. The vl_feat, libsvm, liblinear and
% any other classification and feature extraction library are allowed to
% use in this assignment. The built-in matlab object-detection function
% is not allowed. Good luck and have fun!
%
% Released Date: 31/10/2017
%==========================================================================
% ######################################
% ######################################
% ## ##
% ## Read the README ##
% ## ##
% ######################################
% ######################################
%% Initialisation
%==========================================================================
% Add the path of used library.
% - The function of adding path of liblinear and vlfeat is included.
% - The use image directory is also included in this part.
% - image_dir{1} is the training positive face images(resize).
% - image_dir{2} is the training negative non-face images(resize).
% - val_dir is the validation set of real images
%==========================================================================
clear all
close all
clc
run ICV_setup
% The relevant data directory
images_dir{1} = './data/face_detection/cropped_faces/'; % positive samples directory
images_dir{2} = './data/face_detection/non_faces_images/'; % negative samples directory
face_images_dir = dir(images_dir{1});
face_images_dir(1:2)=[];
val_dir{1} = './data/face_detection/val_face_detection_images/'; % Validation data (For visualization purpose).
val_file = dir(val_dir{1});
val_file(1:2)=[];
val_dir{2} = './data/face_detection/te_raw_images/'; % Validation data (For performance evaluation)
val_file2 = dir(val_dir{2});
val_file2(1:2)=[];
% Hyperparameter of experiments
resize_size=[64 64];
% if ~exist('net')
% Setup MatConvNet.
addpath(genpath('./library/matconvnet/matlab'))
vl_setupnn();
% Load the VGG-Face model.
modelPath = fullfile(vl_rootnn,'data','models','vgg-face.mat') ;
if ~exist(modelPath)
fprintf('Downloading the VGG-Face model ... this may take a while\n') ;
mkdir(fileparts(modelPath)) ;
urlwrite(...
'http://www.vlfeat.org/matconvnet/models/vgg-face.mat', ...
modelPath) ;
end
% Load the model and upgrade it to MatConvNet current version.
net = load(modelPath);
net = vl_simplenn_tidy(net);
%% Feature Extraction for Face Detection
%==========================================================================
% Use the HoG features for face detection.
% - You should read the images and convert any color images into gray. For
% reading all images in subdirectory, you can use matlab function
% 'imageSet('./your data path', 'recursive'). The former quotes is the
% directory to your saved data and the latter 'recursive' is the
% hyparameter of this function.
% - Extract HoG intesert points for training image. You can use either HoG
% or LBP as features. Generally, using HoG with linear SVM can achieve
% reasonable performance which has already been verified from several
% papers. It is okay to use both vl_feat or your own function. You will get
% bonus points if you are using your own code to get the HoG and LBP
% features.
% (You should finish this part by yourself)
%==========================================================================
% Read README.txt for more details
% Feature Extraction
disp('Extracting features...')
hog = true;
lbp = true;
nn = false;
pca_ = false;
normalise = false;
hog_cellSize = 8;
lbp_cellSize = 4;
pca_components = 1000;
max_resize = 1.0;
min_resize = 0.8;
threshold = 0.0;
nPosFace = length(face_images_dir);
nNegFace = 0;
imset = imageSet(images_dir{2}, 'recursive');
for i=1:length(imset)
for j = 1:imset(i).Count
nNegFace = nNegFace + 1;
end
end
%%
if true(hog)
v = resize_size(1) / hog_cellSize;
hog_vectors = zeros(nPosFace + nNegFace, v * v * 31);
for i = 1:nPosFace
temp = imresize(imread([images_dir{1}, face_images_dir(i).name]), resize_size);
w = warning('query', 'last');
id = w.identifier;
warning('off' ,id)
temp = single(temp)/255;
temp = vl_hog(temp, hog_cellSize);
hog_vectors(i, :) = temp(:)';
end
hog_iter = 1;
for i = 1:length(imset)
for j = 1:imset(i).Count
temp = imresize(read(imset(i), j), resize_size);
temp = single(temp)/255;
temp = vl_hog(temp, hog_cellSize);
hog_vectors(nPosFace + hog_iter, :) = temp(:)';
hog_iter = hog_iter + 1;
end
end
end
%%
if true(lbp)
v = resize_size(1) / lbp_cellSize;
lbp_vectors = zeros(nPosFace + nNegFace, v * v * 58);
for i = 1:nPosFace
temp = imresize(imread([images_dir{1}, face_images_dir(i).name]), resize_size);
w = warning('query', 'last');
id = w.identifier;
warning('off' ,id)
temp = single(temp)/255;
temp = vl_lbp(temp, lbp_cellSize);
lbp_vectors(i, :) = temp(:)';
end
lbp_iter = 1;
for i = 1:length(imset)
for j = 1:imset(i).Count
temp = imresize(read(imset(i), j), resize_size);
temp = single(temp)/255;
temp = vl_lbp(temp, lbp_cellSize);
lbp_vectors(nPosFace + lbp_iter, :) = temp(:)';
lbp_iter = lbp_iter + 1;
end
end
end
%%
if true(nn)
if ~exist('nn_vectors', 'var')
if exist(fullfile('data/face_detection/nn_vectors/training/', 'tr_nn_vectors.mat'), 'file') == 2
nn_vectors = load(fullfile('data/face_detection/nn_vectors/training/', 'tr_nn_vectors.mat'));
nn_vectors = nn_vectors.nn_vectors;
disp('Training neural net vectors loaded from storage');
else
nn_vector_size = 2622;
nn_vectors = zeros(nPosFace + nNegFace, nn_vector_size);
h = waitbar(0, 'Initializing waitbar...', 'Name', 'Recognition: Extracting features...');
for i = 1:nPosFace
temp = imresize(imread([images_dir{1}, face_images_dir(i).name]), resize_size);
w = warning('query', 'last');
id = w.identifier;
warning('off' ,id)
temp = single(temp); % 255 range.
temp = imresize(temp, net.meta.normalization.imageSize(1:2));
temp = repmat(temp, [1, 1, 3]);
temp = bsxfun(@minus, temp, net.meta.normalization.averageImage);
temp = vl_simplenn(net, temp);
temp = squeeze(temp(37).x);
temp = temp./norm(temp,2);
nn_vectors(i, :, :) = temp(:)';
perc = i / (nPosFace + nNegFace);
waitbar(perc, h, sprintf('%1.3f%% Complete', perc * 100));
end
va_iter = 1;
for i=1:length(imset)
for j = 1:imset(i).Count
temp = imresize(read(imset(i), j), resize_size);
temp = single(temp); % 255 range.
temp = imresize(temp, net.meta.normalization.imageSize(1:2));
temp = repmat(temp, [1, 1, 3]);
temp = bsxfun(@minus, temp, net.meta.normalization.averageImage);
temp = vl_simplenn(net, temp);
temp = squeeze(temp(37).x);
temp = temp./norm(temp,2);
nn_vectors(nPosFace + va_iter, :, :) = temp(:)';
perc = (nPosFace + va_iter) / (nPosFace + nNegFace);
waitbar(perc, h, sprintf('%1.3f%% Complete', perc * 100));
va_iter = va_iter + 1;
end
end
close(h);
% Save output
save('data/face_detection/nn_vectors/training/tr_nn_vectors.mat', 'nn_vectors');
end
end
end
%%
Xtr = [];
Xva = [];
if true(hog)
Xtr = cat(2, Xtr, hog_vectors);
end
if true(lbp)
Xtr = cat(2, Xtr, lbp_vectors);
end
if true(nn)
Xtr = cat(2, Xtr, nn_vectors);
end
Ytr = [ones(nPosFace, 1); -1 * ones(nNegFace,1)];
% clear hog_vectors lbp_vectors nn_vectors
%%
if true(pca_)
[coeff, score, ~, ~, ~] = pca(Xtr, 'NumComponents', pca_components);
Xtr = score;
end
%%
if true(normalise)
normr(Xtr);
end
%% Training the Face Detector
%==========================================================================
% Training linear SVM as a face detector.
% - It is okay to use all matlab, vlfeat, liblinear built-in function to
% train the SVM. A start hyperparameter of liblinear is '-s 2 -B 1'
% It is free to explore any other hyperparameter combination for getting a
% better results. The primal form of the SVM parameter '-s 2' is
% recommended due to the large amount of training data.
% (You should finish this part by yourself)
%==========================================================================
disp('Training the face detector..')
% Mdl = fitcknn(Xtr, Ytr, 'NumNeighbors', 3);
% Mdl = fitcsvm(Xtr, Ytr);
addpath('library/liblinear-2.1/windows/');
Mdl = train(double(Ytr), sparse(double(Xtr)));
% Clear the training X and Y to save memory.
clear Xtr Ytr
% save your trained model for evaluation.
save('face_detector.mat', 'Mdl')
%% Single/Multi-Scale Sliding Window
%==========================================================================
% Evaluating your detector and the sliding window.
% -It is okay to only use a single-scale sliding window for this assignment.
% However, a better performance would be required a multi-scale sliding
% window due to the different face size in real image.
% (You should finish this part by yourself)
%==========================================================================
load('face_detector.mat')
for k = 1:length(val_file)
img = imread([val_dir{1} val_file(k).name]);
plt_img = img;
if size(img, 3)>1, img = rgb2gray(img); end
window_size = [64 64];
% Sliding window function
[patches, temp_bbox] = sw_detect_face(img, window_size, max_resize, 8);
for p = max_resize - 0.1:-0.1:min_resize
[temp_patches, temp_bbox2] = sw_detect_face(img, window_size, p, 8);
patches = cat(1, patches, temp_patches);
temp_bbox = cat(1, temp_bbox, temp_bbox2);
end
% Extract the features for each patch
total = 0;
for p = 1:length(patches)
for j = 1:size(patches{p}, 3)
total = total + 1;
end
end
if true(hog)
v = resize_size(1) / hog_cellSize;
te_hog_vectors = zeros(total, v * v * 31);
hog_iter = 1;
for p = 1:length(patches)
for j = 1:size(patches{p}, 3)
temp = single(patches{p}(:, :, j))/255;
temp = vl_hog(temp, hog_cellSize);
te_hog_vectors(hog_iter, :) = temp(:)';
hog_iter = hog_iter + 1;
end
end
end
if true(lbp)
v = resize_size(1) / lbp_cellSize;
te_lbp_vectors = zeros(total, v * v * 58);
lbp_iter = 1;
for p = 1:length(patches)
for j = 1:size(patches{p}, 3)
temp = single(patches{p}(:, :, j))/255;
temp = vl_lbp(temp, lbp_cellSize);
te_lbp_vectors(lbp_iter, :) = temp(:)';
lbp_iter = lbp_iter + 1;
end
end
end
if true(nn)
if exist(strcat('data/face_detection/nn_vectors/visualization/vi_nn_vectors_', int2str(k), '.mat'), 'file') == 2
nn_vectors = load(strcat('data/face_detection/nn_vectors/visualization/vi_nn_vectors_', int2str(k), '.mat'));
te_nn_vectors = nn_vectors.te_nn_vectors;
disp(strcat('Visualization neural net vectors_', int2str(k), '_loaded from storage'));
else
nn_vector_size = 2622;
te_nn_vectors = zeros(total, nn_vector_size);
nn_iter = 1;
for p = 1:length(patches)
for j = 1:size(patches{p}, 3)
temp = single(patches{p}(:, :, j)); % 255 range.
temp = imresize(temp, net.meta.normalization.imageSize(1:2));
temp = repmat(temp, [1, 1, 3]);
temp = bsxfun(@minus, temp, net.meta.normalization.averageImage);
temp = vl_simplenn(net, temp);
temp = squeeze(temp(37).x);
temp = temp./norm(temp, 2);
te_nn_vectors(nn_iter, :, :) = temp(:)';
nn_iter = nn_iter + 1;
end
end
% Save output
save(strcat('data/face_detection/nn_vectors/visualization/vi_nn_vectors_', int2str(k), '.mat'), 'te_nn_vectors');
end
end
Xte = [];
if true(hog)
Xte = cat(2, Xte, te_hog_vectors);
end
if true(lbp)
Xte = cat(2, Xte, te_lbp_vectors);
end
if true(nn)
Xte = cat(2, Xte, te_nn_vectors);
end
bbox_ms = [];
for p = 1:length(patches)
for j = 1:size(patches{p}, 3)
bbox_ms = [bbox_ms; temp_bbox{p}(j, :)];
end
end
if true(pca_)
Xte = bsxfun(@minus, Xte, mean(Xte));
Xte = Xte * coeff;
end
if true(normalise)
normr(Xte);
end
% Get the positive probability for proposed faces
[predicted_label, ~, prob_estimates] = predict(zeros(size(Xte, 1), 1), sparse(Xte), Mdl);
l = predicted_label;
score = prob_estimates;
prob2 = score(:, 1);
% Setting a threshold to pick the proposed face images
% threshold = 0.0;
threshold_bbox = bbox_ms(prob2 > threshold, :);
prob3 = prob2(prob2 > threshold, :);
% Remove the redundant boxes via non-maximum supression.
% - The bbox is the top-left x, y, height, width of the patches.
% - prob2 is the confidence of the patches
[selectedBbox, selectedScore] = selectStrongestBbox(threshold_bbox, prob3, 'OverlapThreshold', 0.3, 'RatioType', 'Union');
% Visualise the test images
bbox_position = selectedBbox;
figure
imshow(plt_img)
hold on
for i = 1:size(bbox_position, 1)
rectangle('Position', [bbox_position(i, 2),bbox_position(i, 1),bbox_position(i, 3:4)],...
'EdgeColor', 'b', 'LineWidth', 3)
% This is the bounding box of ground truth. You should not modify this
% part
%======================================================================
rectangle('Position', [83, 92, 166-83, 175-92],...
'EdgeColor', 'r', 'LineWidth', 3)
%======================================================================
end
saveas(gcf, [val_file(k).name(1:end-4), '_sw64.png'])
clear Xte Yte
end
%% Evaluating your result on the val_datasets
load('face_detector.mat')
% Initialization of the true positive, condition positive and prediction
% positive number collection.
total_TP = zeros(length(val_file2), 100);
total_condi_P = zeros(length(val_file2), 100);
total_Pred_P = zeros(length(val_file2), 100);
imset = imageSet(val_dir{2}, 'recursive');
count = 0;
overall_total = 0;
for k = 1:length(val_file2)
for u = 1:length(imset(k).Count)
overall_total = overall_total + 1;
end
end
h = waitbar(0, 'Initializing waitbar...', 'Name', 'Validation: Extracting features...');
for k = 1:length(val_file2)
for u = 1:length(imset(k).Count)
count = count + 1;
img = read(imset(k), u);
plt_img = img;
if size(img, 3)>1, img = rgb2gray(img); end
window_size=[64 64];
% Sliding window function
[patches, temp_bbox] = sw_detect_face(img, window_size, max_resize, 8);
for p = max_resize - 0.1:-0.1:min_resize
[temp_patches, temp_bbox2] = sw_detect_face(img, window_size, p, 8);
patches = cat(1, patches, temp_patches);
temp_bbox = cat(1, temp_bbox, temp_bbox2);
end
% Extract the features for each patch
total = 0;
for p = 1:length(patches)
for j = 1:size(patches{p}, 3)
total = total + 1;
end
end
if true(hog)
v = resize_size(1) / hog_cellSize;
te_hog_vectors = zeros(total, v * v * 31);
hog_iter = 1;
for p = 1:length(patches)
for j = 1:size(patches{p}, 3)
temp = single(patches{p}(:, :, j))/255;
temp = vl_hog(temp, hog_cellSize);
te_hog_vectors(hog_iter, :) = temp(:)';
hog_iter = hog_iter + 1;
end
end
end
if true(lbp)
v = resize_size(1) / lbp_cellSize;
te_lbp_vectors = zeros(total, v * v * 58);
lbp_iter = 1;
for p = 1:length(patches)
for j = 1:size(patches{p}, 3)
temp = single(patches{p}(:, :, j))/255;
temp = vl_lbp(temp, lbp_cellSize);
te_lbp_vectors(lbp_iter, :) = temp(:)';
lbp_iter = lbp_iter + 1;
end
end
end
if true(nn)
if exist(strcat('data/face_detection/nn_vectors/validation/va_nn_vectors_', int2str(k), '_', int2str(u), '.mat'), 'file') == 2
nn_vectors = load(strcat('data/face_detection/nn_vectors/validation/va_nn_vectors_', int2str(k), '_', int2str(u), '.mat'));
te_nn_vectors = nn_vectors.te_nn_vectors;
disp(strcat('Validation neural net vectors_', int2str(k), '_', int2str(u), '_loaded from storage'));
else
nn_vector_size = 2622;
te_nn_vectors = zeros(total, nn_vector_size);
nn_iter = 1;
for p = 1:length(patches)
for j = 1:size(patches{p}, 3)
temp = single(patches{p}(:, :, j)); % 255 range.
temp = imresize(temp, net.meta.normalization.imageSize(1:2));
temp = repmat(temp, [1, 1, 3]);
temp = bsxfun(@minus, temp, net.meta.normalization.averageImage);
temp = vl_simplenn(net, temp);
temp = squeeze(temp(37).x);
temp = temp./norm(temp, 2);
te_nn_vectors(nn_iter, :, :) = temp(:)';
nn_iter = nn_iter + 1;
end
end
% Save output
save(strcat('data/face_detection/nn_vectors/validation/va_nn_vectors_', int2str(k), '_', int2str(u), '.mat'), 'te_nn_vectors');
end
end
Xte = [];
if true(hog)
Xte = cat(2, Xte, te_hog_vectors);
end
if true(lbp)
Xte = cat(2, Xte, te_lbp_vectors);
end
if true(nn)
Xte = cat(2, Xte, te_nn_vectors);
end
bbox_ms = [];
for p = 1:length(patches)
for j = 1:size(patches{p}, 3)
bbox_ms = [bbox_ms; temp_bbox{p}(j, :)];
end
end
if true(pca_)
Xte = bsxfun(@minus, Xte, mean(Xte));
Xte = Xte * coeff;
end
if true(normalise)
normr(Xte);
end
% Get the positive probability for proposed faces
[predicted_label, ~, prob_estimates] = predict(zeros(size(Xte, 1), 1), sparse(Xte), Mdl);
l = predicted_label;
score = prob_estimates;
prob2 = score(:, 1);
% Getting the True positive, condition positive, predicted positive
% number for evaluating the algorithm performance via Average
[ TP_num, condi_P, Pred_P ] = evaluate_detector( bbox_ms, prob2 );
total_TP(count,:) = TP_num;
total_condi_P(count,:) = condi_P;
total_Pred_P(count,:) = Pred_P;
perc = count / overall_total;
waitbar(perc, h, sprintf('%1.3f%% Complete', perc * 100));
clear Xte Yte
end
end
close(h);
% Summing the statistics over all faces images.
sTP = sum(total_TP);
sCP = sum(total_condi_P);
sPP = sum(total_Pred_P);
% Compute the Precision
% TP is the number of intersection betweem recognized faces and the
% actual faces
Precision = sTP./sPP; % TP/(The number of recognized faces)
Recall = sTP./sCP; % TP/(The number of actual faces)
% Ploting the Precision-Recall curve. Normally, the yaxis is the Precision
% and xaxis is the Recall.
figure
plot(Recall, Precision)
xlabel('Recall');
ylabel('Precision');
% Interpolated Average Precision
AP = VOCap(Recall', Precision');
disp(num2str(AP))