-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsw_detect_face.asv
50 lines (40 loc) · 1.79 KB
/
sw_detect_face.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
function [ patches,bbox_location ] = sw_detect_face(img, window_size, scale, stride)
% sw_multiscale_detect_face
% - This is a function to proposed the potential face images via moving the
% sliding window.
%==========================================================================
% Output:
% - patches: a cell to store every window_size proposed images. The size
% of save images are H*W*N, where N is the number of sliding
% - bbox_location: bounding box [x,y,height,width]
%--------------------------------------------------------------------------
% Input:
% - real_image : The original images without resize
% - window_size: The proposed sliding window size
% - scale : The scale of for each original image
% - stride : The steps between each save images
%==========================================================================
real_image = img;
img = imresize(img, scale);
% single-scale sliding window
[irow, icol] = size(img);
% window_size = int16(window_size / scale);
% stride = int16(stride / scale);
window_y = window_size(1);
window_x = window_size(2);
number_of_windows = floor(((irow-window_y)/stride) + 1) * floor(((icol-window_x)/stride) + 1);
single_patches = zeros(window_y, window_x, number_of_windows, 'uint8');
single_bbox_location = zeros(number_of_windows, 4, 'uint8');
count = 1;
% Iteratively save the patches.
for y = 1:stride:irow+1-window_y
for x = 1:stride:icol+1-window_x
single_patches(:,:,count) = img(y:y+window_y-1, x:x+window_x-1); % Image patch at bbox location
single_bbox_location(count, :) = [y * scale, x * scale, window_y, window_x]; % Bbox cords, top-left y, x, height, width
count = count + 1;
end
end
% Pass through output
patches{1} = single_patches;
bbox_location{1} = single_bbox_location;
end