-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathex_0_stonecarver_kernal_fitting.py
1126 lines (914 loc) · 39.5 KB
/
ex_0_stonecarver_kernal_fitting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#implements kernel feature maps based on Fourier transforms and Count Sketches.
import warnings
from numbers import Integral, Real
import numpy as np
import scipy.sparse as sp
from scipy.linalg import svd
try:
from scipy.fft import fft, ifft
except ImportError: # scipy < 1.4
from scipy.fftpack import fft, ifft
from .base import (
BaseEstimator,
ClassNamePrefixFeaturesOutMixin,
TransformerMixin,
_fit_context,
)
from .metrics.pairwise import KERNEL_PARAMS, PAIRWISE_KERNEL_FUNCTIONS, pairwise_kernels
from .utils import check_random_state, deprecated
from .utils._param_validation import Interval, StrOptions
from .utils.extmath import safe_sparse_dot
from .utils.validation import (
_check_feature_names_in,
check_is_fitted,
check_non_negative,
)
class PolynomialCountSketch(
ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator
):
"""Polynomial kernel approximation via Tensor Sketch.
Implements Tensor Sketch, which approximates the feature map
of the polynomial kernel::
K(X, Y) = (gamma * <X, Y> + coef0)^degree
by efficiently computing a Count Sketch of the outer product of a
vector with itself using Fast Fourier Transforms (FFT). Read more in the
:ref:`User Guide <polynomial_kernel_approx>`.
.. versionadded:: 0.24
Parameters
----------
gamma : float, default=1.0
Parameter of the polynomial kernel whose feature map
will be approximated.
degree : int, default=2
Degree of the polynomial kernel whose feature map
will be approximated.
coef0 : int, default=0
Constant term of the polynomial kernel whose feature map
will be approximated.
n_components : int, default=100
Dimensionality of the output feature space. Usually, `n_components`
should be greater than the number of features in input samples in
order to achieve good performance. The optimal score / run time
balance is typically achieved around `n_components` = 10 * `n_features`,
but this depends on the specific dataset being used.
random_state : int, RandomState instance, default=None
Determines random number generation for indexHash and bitHash
initialization. Pass an int for reproducible results across multiple
function calls. See :term:`Glossary <random_state>`.
Attributes
----------
indexHash_ : ndarray of shape (degree, n_features), dtype=int64
Array of indexes in range [0, n_components) used to represent
the 2-wise independent hash functions for Count Sketch computation.
bitHash_ : ndarray of shape (degree, n_features), dtype=float32
Array with random entries in {+1, -1}, used to represent
the 2-wise independent hash functions for Count Sketch computation.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
AdditiveChi2Sampler : Approximate feature map for additive chi2 kernel.
Nystroem : Approximate a kernel map using a subset of the training data.
RBFSampler : Approximate a RBF kernel feature map using random Fourier
features.
SkewedChi2Sampler : Approximate feature map for "skewed chi-squared" kernel.
sklearn.metrics.pairwise.kernel_metrics : List of built-in kernels.
Examples
--------
>>> from sklearn.kernel_approximation import PolynomialCountSketch
>>> from sklearn.linear_model import SGDClassifier
>>> X = [[0, 0], [1, 1], [1, 0], [0, 1]]
>>> y = [0, 0, 1, 1]
>>> ps = PolynomialCountSketch(degree=3, random_state=1)
>>> X_features = ps.fit_transform(X)
>>> clf = SGDClassifier(max_iter=10, tol=1e-3)
>>> clf.fit(X_features, y)
SGDClassifier(max_iter=10)
>>> clf.score(X_features, y)
1.0
"""
_parameter_constraints: dict = {
"gamma": [Interval(Real, 0, None, closed="left")],
"degree": [Interval(Integral, 1, None, closed="left")],
"coef0": [Interval(Real, None, None, closed="neither")],
"n_components": [Interval(Integral, 1, None, closed="left")],
"random_state": ["random_state"],
}
def __init__(
self, *, gamma=1.0, degree=2, coef0=0, n_components=100, random_state=None
):
self.gamma = gamma
self.degree = degree
self.coef0 = coef0
self.n_components = n_components
self.random_state = random_state
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y=None):
"""Fit the model with X.
Initializes the internal variables. The method needs no information
about the distribution of data, so we only care about n_features in X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : array-like of shape (n_samples,) or (n_samples, n_outputs), \
default=None
Target values (None for unsupervised transformations).
Returns
-------
self : object
Returns the instance itself.
"""
X = self._validate_data(X, accept_sparse="csc")
random_state = check_random_state(self.random_state)
n_features = X.shape[1]
if self.coef0 != 0:
n_features += 1
self.indexHash_ = random_state.randint(
0, high=self.n_components, size=(self.degree, n_features)
)
self.bitHash_ = random_state.choice(a=[-1, 1], size=(self.degree, n_features))
self._n_features_out = self.n_components
return self
def transform(self, X):
"""Generate the feature map approximation for X.
Parameters
----------
X : {array-like}, shape (n_samples, n_features)
New data, where `n_samples` is the number of samples
and `n_features` is the number of features.
Returns
-------
X_new : array-like, shape (n_samples, n_components)
Returns the instance itself.
"""
check_is_fitted(self)
X = self._validate_data(X, accept_sparse="csc", reset=False)
X_gamma = np.sqrt(self.gamma) * X
if sp.issparse(X_gamma) and self.coef0 != 0:
X_gamma = sp.hstack(
[X_gamma, np.sqrt(self.coef0) * np.ones((X_gamma.shape[0], 1))],
format="csc",
)
elif not sp.issparse(X_gamma) and self.coef0 != 0:
X_gamma = np.hstack(
[X_gamma, np.sqrt(self.coef0) * np.ones((X_gamma.shape[0], 1))]
)
if X_gamma.shape[1] != self.indexHash_.shape[1]:
raise ValueError(
"Number of features of test samples does not"
" match that of training samples."
)
count_sketches = np.zeros((X_gamma.shape[0], self.degree, self.n_components))
if sp.issparse(X_gamma):
for j in range(X_gamma.shape[1]):
for d in range(self.degree):
iHashIndex = self.indexHash_[d, j]
iHashBit = self.bitHash_[d, j]
count_sketches[:, d, iHashIndex] += (
(iHashBit * X_gamma[:, j]).toarray().ravel()
)
else:
for j in range(X_gamma.shape[1]):
for d in range(self.degree):
iHashIndex = self.indexHash_[d, j]
iHashBit = self.bitHash_[d, j]
count_sketches[:, d, iHashIndex] += iHashBit * X_gamma[:, j]
# For each same, compute a count sketch of phi(x) using the polynomial
# multiplication (via FFT) of p count sketches of x.
count_sketches_fft = fft(count_sketches, axis=2, overwrite_x=True)
count_sketches_fft_prod = np.prod(count_sketches_fft, axis=1)
data_sketch = np.real(ifft(count_sketches_fft_prod, overwrite_x=True))
return data_sketch
class RBFSampler(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
"""Approximate a RBF kernel feature map using random Fourier features.
It implements a variant of Random Kitchen Sinks.[1]
Read more in the :ref:`User Guide <rbf_kernel_approx>`.
Parameters
----------
gamma : 'scale' or float, default=1.0
Parameter of RBF kernel: exp(-gamma * x^2).
If ``gamma='scale'`` is passed then it uses
1 / (n_features * X.var()) as value of gamma.
.. versionadded:: 1.2
The option `"scale"` was added in 1.2.
n_components : int, default=100
Number of Monte Carlo samples per original feature.
Equals the dimensionality of the computed feature space.
random_state : int, RandomState instance or None, default=None
Pseudo-random number generator to control the generation of the random
weights and random offset when fitting the training data.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
Attributes
----------
random_offset_ : ndarray of shape (n_components,), dtype={np.float64, np.float32}
Random offset used to compute the projection in the `n_components`
dimensions of the feature space.
random_weights_ : ndarray of shape (n_features, n_components),\
dtype={np.float64, np.float32}
Random projection directions drawn from the Fourier transform
of the RBF kernel.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
AdditiveChi2Sampler : Approximate feature map for additive chi2 kernel.
Nystroem : Approximate a kernel map using a subset of the training data.
PolynomialCountSketch : Polynomial kernel approximation via Tensor Sketch.
SkewedChi2Sampler : Approximate feature map for
"skewed chi-squared" kernel.
sklearn.metrics.pairwise.kernel_metrics : List of built-in kernels.
Notes
-----
See "Random Features for Large-Scale Kernel Machines" by A. Rahimi and
Benjamin Recht.
[1] "Weighted Sums of Random Kitchen Sinks: Replacing
minimization with randomization in learning" by A. Rahimi and
Benjamin Recht.
(https://people.eecs.berkeley.edu/~brecht/papers/08.rah.rec.nips.pdf)
Examples
--------
>>> from sklearn.kernel_approximation import RBFSampler
>>> from sklearn.linear_model import SGDClassifier
>>> X = [[0, 0], [1, 1], [1, 0], [0, 1]]
>>> y = [0, 0, 1, 1]
>>> rbf_feature = RBFSampler(gamma=1, random_state=1)
>>> X_features = rbf_feature.fit_transform(X)
>>> clf = SGDClassifier(max_iter=5, tol=1e-3)
>>> clf.fit(X_features, y)
SGDClassifier(max_iter=5)
>>> clf.score(X_features, y)
1.0
"""
_parameter_constraints: dict = {
"gamma": [
StrOptions({"scale"}),
Interval(Real, 0.0, None, closed="left"),
],
"n_components": [Interval(Integral, 1, None, closed="left")],
"random_state": ["random_state"],
}
def __init__(self, *, gamma=1.0, n_components=100, random_state=None):
self.gamma = gamma
self.n_components = n_components
self.random_state = random_state
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y=None):
"""Fit the model with X.
Samples random projection according to n_features.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : array-like, shape (n_samples,) or (n_samples, n_outputs), \
default=None
Target values (None for unsupervised transformations).
Returns
-------
self : object
Returns the instance itself.
"""
X = self._validate_data(X, accept_sparse="csr")
random_state = check_random_state(self.random_state)
n_features = X.shape[1]
sparse = sp.issparse(X)
if self.gamma == "scale":
# var = E[X^2] - E[X]^2 if sparse
X_var = (X.multiply(X)).mean() - (X.mean()) ** 2 if sparse else X.var()
self._gamma = 1.0 / (n_features * X_var) if X_var != 0 else 1.0
else:
self._gamma = self.gamma
self.random_weights_ = (2.0 * self._gamma) ** 0.5 * random_state.normal(
size=(n_features, self.n_components)
)
self.random_offset_ = random_state.uniform(0, 2 * np.pi, size=self.n_components)
if X.dtype == np.float32:
# Setting the data type of the fitted attribute will ensure the
# output data type during `transform`.
self.random_weights_ = self.random_weights_.astype(X.dtype, copy=False)
self.random_offset_ = self.random_offset_.astype(X.dtype, copy=False)
self._n_features_out = self.n_components
return self
def transform(self, X):
"""Apply the approximate feature map to X.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
New data, where `n_samples` is the number of samples
and `n_features` is the number of features.
Returns
-------
X_new : array-like, shape (n_samples, n_components)
Returns the instance itself.
"""
check_is_fitted(self)
X = self._validate_data(X, accept_sparse="csr", reset=False)
projection = safe_sparse_dot(X, self.random_weights_)
projection += self.random_offset_
np.cos(projection, projection)
projection *= (2.0 / self.n_components) ** 0.5
return projection
def _more_tags(self):
return {"preserves_dtype": [np.float64, np.float32]}
class SkewedChi2Sampler(
ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator
):
"""Approximate feature map for "skewed chi-squared" kernel.
Read more in the :ref:`User Guide <skewed_chi_kernel_approx>`.
Parameters
----------
skewedness : float, default=1.0
"skewedness" parameter of the kernel. Needs to be cross-validated.
n_components : int, default=100
Number of Monte Carlo samples per original feature.
Equals the dimensionality of the computed feature space.
random_state : int, RandomState instance or None, default=None
Pseudo-random number generator to control the generation of the random
weights and random offset when fitting the training data.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
Attributes
----------
random_weights_ : ndarray of shape (n_features, n_components)
Weight array, sampled from a secant hyperbolic distribution, which will
be used to linearly transform the log of the data.
random_offset_ : ndarray of shape (n_features, n_components)
Bias term, which will be added to the data. It is uniformly distributed
between 0 and 2*pi.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
AdditiveChi2Sampler : Approximate feature map for additive chi2 kernel.
Nystroem : Approximate a kernel map using a subset of the training data.
RBFSampler : Approximate a RBF kernel feature map using random Fourier
features.
SkewedChi2Sampler : Approximate feature map for "skewed chi-squared" kernel.
sklearn.metrics.pairwise.chi2_kernel : The exact chi squared kernel.
sklearn.metrics.pairwise.kernel_metrics : List of built-in kernels.
References
----------
See "Random Fourier Approximations for Skewed Multiplicative Histogram
Kernels" by Fuxin Li, Catalin Ionescu and Cristian Sminchisescu.
Examples
--------
>>> from sklearn.kernel_approximation import SkewedChi2Sampler
>>> from sklearn.linear_model import SGDClassifier
>>> X = [[0, 0], [1, 1], [1, 0], [0, 1]]
>>> y = [0, 0, 1, 1]
>>> chi2_feature = SkewedChi2Sampler(skewedness=.01,
... n_components=10,
... random_state=0)
>>> X_features = chi2_feature.fit_transform(X, y)
>>> clf = SGDClassifier(max_iter=10, tol=1e-3)
>>> clf.fit(X_features, y)
SGDClassifier(max_iter=10)
>>> clf.score(X_features, y)
1.0
"""
_parameter_constraints: dict = {
"skewedness": [Interval(Real, None, None, closed="neither")],
"n_components": [Interval(Integral, 1, None, closed="left")],
"random_state": ["random_state"],
}
def __init__(self, *, skewedness=1.0, n_components=100, random_state=None):
self.skewedness = skewedness
self.n_components = n_components
self.random_state = random_state
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y=None):
"""Fit the model with X.
Samples random projection according to n_features.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : array-like, shape (n_samples,) or (n_samples, n_outputs), \
default=None
Target values (None for unsupervised transformations).
Returns
-------
self : object
Returns the instance itself.
"""
X = self._validate_data(X)
random_state = check_random_state(self.random_state)
n_features = X.shape[1]
uniform = random_state.uniform(size=(n_features, self.n_components))
# transform by inverse CDF of sech
self.random_weights_ = 1.0 / np.pi * np.log(np.tan(np.pi / 2.0 * uniform))
self.random_offset_ = random_state.uniform(0, 2 * np.pi, size=self.n_components)
if X.dtype == np.float32:
# Setting the data type of the fitted attribute will ensure the
# output data type during `transform`.
self.random_weights_ = self.random_weights_.astype(X.dtype, copy=False)
self.random_offset_ = self.random_offset_.astype(X.dtype, copy=False)
self._n_features_out = self.n_components
return self
def transform(self, X):
"""Apply the approximate feature map to X.
Parameters
----------
X : array-like, shape (n_samples, n_features)
New data, where `n_samples` is the number of samples
and `n_features` is the number of features. All values of X must be
strictly greater than "-skewedness".
Returns
-------
X_new : array-like, shape (n_samples, n_components)
Returns the instance itself.
"""
check_is_fitted(self)
X = self._validate_data(
X, copy=True, dtype=[np.float64, np.float32], reset=False
)
if (X <= -self.skewedness).any():
raise ValueError("X may not contain entries smaller than -skewedness.")
X += self.skewedness
np.log(X, X)
projection = safe_sparse_dot(X, self.random_weights_)
projection += self.random_offset_
np.cos(projection, projection)
projection *= np.sqrt(2.0) / np.sqrt(self.n_components)
return projection
def _more_tags(self):
return {"preserves_dtype": [np.float64, np.float32]}
class AdditiveChi2Sampler(TransformerMixin, BaseEstimator):
"""Approximate feature map for additive chi2 kernel.
Uses sampling the fourier transform of the kernel characteristic
at regular intervals.
Since the kernel that is to be approximated is additive, the components of
the input vectors can be treated separately. Each entry in the original
space is transformed into 2*sample_steps-1 features, where sample_steps is
a parameter of the method. Typical values of sample_steps include 1, 2 and
3.
Optimal choices for the sampling interval for certain data ranges can be
computed (see the reference). The default values should be reasonable.
Read more in the :ref:`User Guide <additive_chi_kernel_approx>`.
Parameters
----------
sample_steps : int, default=2
Gives the number of (complex) sampling points.
sample_interval : float, default=None
Sampling interval. Must be specified when sample_steps not in {1,2,3}.
Attributes
----------
sample_interval_ : float
Stored sampling interval. Specified as a parameter if `sample_steps`
not in {1,2,3}.
.. deprecated:: 1.3
`sample_interval_` serves internal purposes only and will be removed in 1.5.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
SkewedChi2Sampler : A Fourier-approximation to a non-additive variant of
the chi squared kernel.
sklearn.metrics.pairwise.chi2_kernel : The exact chi squared kernel.
sklearn.metrics.pairwise.additive_chi2_kernel : The exact additive chi
squared kernel.
Notes
-----
This estimator approximates a slightly different version of the additive
chi squared kernel then ``metric.additive_chi2`` computes.
This estimator is stateless and does not need to be fitted. However, we
recommend to call :meth:`fit_transform` instead of :meth:`transform`, as
parameter validation is only performed in :meth:`fit`.
References
----------
See `"Efficient additive kernels via explicit feature maps"
<http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/vedaldi11efficient.pdf>`_
A. Vedaldi and A. Zisserman, Pattern Analysis and Machine Intelligence,
2011
Examples
--------
>>> from sklearn.datasets import load_digits
>>> from sklearn.linear_model import SGDClassifier
>>> from sklearn.kernel_approximation import AdditiveChi2Sampler
>>> X, y = load_digits(return_X_y=True)
>>> chi2sampler = AdditiveChi2Sampler(sample_steps=2)
>>> X_transformed = chi2sampler.fit_transform(X, y)
>>> clf = SGDClassifier(max_iter=5, random_state=0, tol=1e-3)
>>> clf.fit(X_transformed, y)
SGDClassifier(max_iter=5, random_state=0)
>>> clf.score(X_transformed, y)
0.9499...
"""
_parameter_constraints: dict = {
"sample_steps": [Interval(Integral, 1, None, closed="left")],
"sample_interval": [Interval(Real, 0, None, closed="left"), None],
}
def __init__(self, *, sample_steps=2, sample_interval=None):
self.sample_steps = sample_steps
self.sample_interval = sample_interval
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y=None):
"""Only validates estimator's parameters.
This method allows to: (i) validate the estimator's parameters and
(ii) be consistent with the scikit-learn transformer API.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : array-like, shape (n_samples,) or (n_samples, n_outputs), \
default=None
Target values (None for unsupervised transformations).
Returns
-------
self : object
Returns the transformer.
"""
X = self._validate_data(X, accept_sparse="csr")
check_non_negative(X, "X in AdditiveChi2Sampler.fit")
# TODO(1.5): remove the setting of _sample_interval from fit
if self.sample_interval is None:
# See figure 2 c) of "Efficient additive kernels via explicit feature maps"
# <http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/vedaldi11efficient.pdf>
# A. Vedaldi and A. Zisserman, Pattern Analysis and Machine Intelligence,
# 2011
if self.sample_steps == 1:
self._sample_interval = 0.8
elif self.sample_steps == 2:
self._sample_interval = 0.5
elif self.sample_steps == 3:
self._sample_interval = 0.4
else:
raise ValueError(
"If sample_steps is not in [1, 2, 3],"
" you need to provide sample_interval"
)
else:
self._sample_interval = self.sample_interval
return self
# TODO(1.5): remove
@deprecated( # type: ignore
"The ``sample_interval_`` attribute was deprecated in version 1.3 and "
"will be removed 1.5."
)
@property
def sample_interval_(self):
return self._sample_interval
def transform(self, X):
"""Apply approximate feature map to X.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
Returns
-------
X_new : {ndarray, sparse matrix}, \
shape = (n_samples, n_features * (2*sample_steps - 1))
Whether the return value is an array or sparse matrix depends on
the type of the input X.
"""
X = self._validate_data(X, accept_sparse="csr", reset=False)
check_non_negative(X, "X in AdditiveChi2Sampler.transform")
sparse = sp.issparse(X)
if hasattr(self, "_sample_interval"):
# TODO(1.5): remove this branch
sample_interval = self._sample_interval
else:
if self.sample_interval is None:
# See figure 2 c) of "Efficient additive kernels via explicit feature maps" # noqa
# <http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/vedaldi11efficient.pdf>
# A. Vedaldi and A. Zisserman, Pattern Analysis and Machine Intelligence, # noqa
# 2011
if self.sample_steps == 1:
sample_interval = 0.8
elif self.sample_steps == 2:
sample_interval = 0.5
elif self.sample_steps == 3:
sample_interval = 0.4
else:
raise ValueError(
"If sample_steps is not in [1, 2, 3],"
" you need to provide sample_interval"
)
else:
sample_interval = self.sample_interval
# zeroth component
# 1/cosh = sech
# cosh(0) = 1.0
transf = self._transform_sparse if sparse else self._transform_dense
return transf(X, self.sample_steps, sample_interval)
def get_feature_names_out(self, input_features=None):
"""Get output feature names for transformation.
Parameters
----------
input_features : array-like of str or None, default=None
Only used to validate feature names with the names seen in :meth:`fit`.
Returns
-------
feature_names_out : ndarray of str objects
Transformed feature names.
"""
check_is_fitted(self, "n_features_in_")
input_features = _check_feature_names_in(
self, input_features, generate_names=True
)
est_name = self.__class__.__name__.lower()
names_list = [f"{est_name}_{name}_sqrt" for name in input_features]
for j in range(1, self.sample_steps):
cos_names = [f"{est_name}_{name}_cos{j}" for name in input_features]
sin_names = [f"{est_name}_{name}_sin{j}" for name in input_features]
names_list.extend(cos_names + sin_names)
return np.asarray(names_list, dtype=object)
@staticmethod
def _transform_dense(X, sample_steps, sample_interval):
non_zero = X != 0.0
X_nz = X[non_zero]
X_step = np.zeros_like(X)
X_step[non_zero] = np.sqrt(X_nz * sample_interval)
X_new = [X_step]
log_step_nz = sample_interval * np.log(X_nz)
step_nz = 2 * X_nz * sample_interval
for j in range(1, sample_steps):
factor_nz = np.sqrt(step_nz / np.cosh(np.pi * j * sample_interval))
X_step = np.zeros_like(X)
X_step[non_zero] = factor_nz * np.cos(j * log_step_nz)
X_new.append(X_step)
X_step = np.zeros_like(X)
X_step[non_zero] = factor_nz * np.sin(j * log_step_nz)
X_new.append(X_step)
return np.hstack(X_new)
@staticmethod
def _transform_sparse(X, sample_steps, sample_interval):
indices = X.indices.copy()
indptr = X.indptr.copy()
data_step = np.sqrt(X.data * sample_interval)
X_step = sp.csr_matrix(
(data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False
)
X_new = [X_step]
log_step_nz = sample_interval * np.log(X.data)
step_nz = 2 * X.data * sample_interval
for j in range(1, sample_steps):
factor_nz = np.sqrt(step_nz / np.cosh(np.pi * j * sample_interval))
data_step = factor_nz * np.cos(j * log_step_nz)
X_step = sp.csr_matrix(
(data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False
)
X_new.append(X_step)
data_step = factor_nz * np.sin(j * log_step_nz)
X_step = sp.csr_matrix(
(data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False
)
X_new.append(X_step)
return sp.hstack(X_new)
def _more_tags(self):
return {"stateless": True, "requires_positive_X": True}
class Nystroem(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
"""Approximate a kernel map using a subset of the training data.
Constructs an approximate feature map for an arbitrary kernel
using a subset of the data as basis.
Read more in the :ref:`User Guide <nystroem_kernel_approx>`.
.. versionadded:: 0.13
Parameters
----------
kernel : str or callable, default='rbf'
Kernel map to be approximated. A callable should accept two arguments
and the keyword arguments passed to this object as `kernel_params`, and
should return a floating point number.
gamma : float, default=None
Gamma parameter for the RBF, laplacian, polynomial, exponential chi2
and sigmoid kernels. Interpretation of the default value is left to
the kernel; see the documentation for sklearn.metrics.pairwise.
Ignored by other kernels.
coef0 : float, default=None
Zero coefficient for polynomial and sigmoid kernels.
Ignored by other kernels.
degree : float, default=None
Degree of the polynomial kernel. Ignored by other kernels.
kernel_params : dict, default=None
Additional parameters (keyword arguments) for kernel function passed
as callable object.
n_components : int, default=100
Number of features to construct.
How many data points will be used to construct the mapping.
random_state : int, RandomState instance or None, default=None
Pseudo-random number generator to control the uniform sampling without
replacement of `n_components` of the training data to construct the
basis kernel.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
n_jobs : int, default=None
The number of jobs to use for the computation. This works by breaking
down the kernel matrix into `n_jobs` even slices and computing them in
parallel.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
.. versionadded:: 0.24
Attributes
----------
components_ : ndarray of shape (n_components, n_features)
Subset of training points used to construct the feature map.
component_indices_ : ndarray of shape (n_components)
Indices of ``components_`` in the training set.
normalization_ : ndarray of shape (n_components, n_components)
Normalization matrix needed for embedding.
Square root of the kernel matrix on ``components_``.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
AdditiveChi2Sampler : Approximate feature map for additive chi2 kernel.
PolynomialCountSketch : Polynomial kernel approximation via Tensor Sketch.
RBFSampler : Approximate a RBF kernel feature map using random Fourier
features.
SkewedChi2Sampler : Approximate feature map for "skewed chi-squared" kernel.
sklearn.metrics.pairwise.kernel_metrics : List of built-in kernels.
References
----------
* Williams, C.K.I. and Seeger, M.
"Using the Nystroem method to speed up kernel machines",
Advances in neural information processing systems 2001
* T. Yang, Y. Li, M. Mahdavi, R. Jin and Z. Zhou
"Nystroem Method vs Random Fourier Features: A Theoretical and Empirical
Comparison",
Advances in Neural Information Processing Systems 2012
Examples
--------
>>> from sklearn import datasets, svm
>>> from sklearn.kernel_approximation import Nystroem
>>> X, y = datasets.load_digits(n_class=9, return_X_y=True)
>>> data = X / 16.
>>> clf = svm.LinearSVC(dual="auto")
>>> feature_map_nystroem = Nystroem(gamma=.2,
... random_state=1,
... n_components=300)
>>> data_transformed = feature_map_nystroem.fit_transform(data)
>>> clf.fit(data_transformed, y)
LinearSVC(dual='auto')
>>> clf.score(data_transformed, y)
0.9987...
"""
_parameter_constraints: dict = {
"kernel": [
StrOptions(set(PAIRWISE_KERNEL_FUNCTIONS.keys()) | {"precomputed"}),
callable,
],
"gamma": [Interval(Real, 0, None, closed="left"), None],
"coef0": [Interval(Real, None, None, closed="neither"), None],
"degree": [Interval(Real, 1, None, closed="left"), None],
"kernel_params": [dict, None],
"n_components": [Interval(Integral, 1, None, closed="left")],
"random_state": ["random_state"],
"n_jobs": [Integral, None],
}
def __init__(
self,
kernel="rbf",
*,
gamma=None,
coef0=None,
degree=None,
kernel_params=None,
n_components=100,
random_state=None,
n_jobs=None,
):
self.kernel = kernel
self.gamma = gamma
self.coef0 = coef0
self.degree = degree