forked from pyrocko/contrib-snufflings
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlocal_magnitude.py
342 lines (272 loc) · 11.7 KB
/
local_magnitude.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
from __future__ import print_function
from builtins import str
import os
import copy
import numpy as num
from collections import defaultdict
from pyrocko.gui.snuffling import Snuffling, Param, PhaseMarker, Switch, Choice, \
EventMarker
from pyrocko import guts, orthodrome, trace
from pyrocko.gui.util import to01
from pyrocko.plot import graph_colors
__author__ = 'Catarina Matos (cpfcmatos@gmail.com)'
km = 1000.
wood_anderson_response = trace.PoleZeroResponse(
zeros=[0., 0.],
poles=[(-5.49779 - 5.60886j), (-5.49779 + 5.60886j)],
constant=1.
)
class LocalMagnitudeSnuffling(Snuffling):
'''
Local Magnitude Estimation
--------------------------
Main Control High- and Lowpass filters are applied to the data before
simulating the Wood-Anderson receiver.
The suggested default values for the geometrical spreading, anelastic
attenuation and static magnification are those recommended by IASPEI.
For correct estimates these values have to be calibrated for the region
under investigation.
For further information:
http://gfzpublic.gfz-potsdam.de/pubman/item/escidoc:816929:1/component/escidoc:816928/IS_3.3_rev1.pdf
Waveform data either need to have unit 'meters' or if instument
responses have to be removed select *Needs restitution* and use the file
browser to read responses.
References:
- Bormann, P. and Dewey J., 2012. The new IASPEI standards for determining
magnitudes from digital data and their relation to classical
magnitudes. doi:
- Hutton, K.L. and Boore D.M., 1987. The ML scale in southern California.
Bull. seism. Soc. Am., 77, 2074-2094
- Richter C.F., 1935. An instrumental earthquake magnitude scale, Bull.
seism. Soc. Am., 25, 1-32.
'''
def setup(self):
self._responses = None
self.add_parameter(Param(
'geom. spreading', 'const_a', 1.11, 1., 2.))
self.add_parameter(Param(
'anelastic attenuation', 'const_b', 0.00189, 0., 1.))
self.add_parameter(Param(
'static magnification', 'const_c', -2.09, -5., 5.))
self.add_parameter(Param(
'Duration for "fixed" time window',
'duration_fixed', 200., 1., 500.))
self.add_parameter(Choice(
'Time window', 'time_window', 'visible / selected',
['visible / selected', 'fixed', 'distance dependent']))
self.add_parameter(Choice(
'Apply to', 'apply_to', 'active event',
['active event', 'selected events', 'all events']))
self.add_parameter(Switch(
'Show restituted traces', 'show_restituded_traces', False))
self.add_parameter(Switch(
'Mark readings', 'show_markers', False))
self.add_parameter(Switch(
'Show plot', 'show_plot', False))
self.add_parameter(Switch(
'Show message', 'do_show_message', True))
self.add_parameter(Switch(
'Needs restitution', 'needs_restitution', False))
self.add_parameter(Switch(
'Set event magnitude', 'modify_inplace', False))
self.set_name('Local Magnitude')
self.set_live_update(False)
self.vmin = 1500.
self.vmax = 6000.
def read_responses(self, dirname):
responses = {}
entries = os.listdir(dirname)
for entry in entries:
if entry.endswith('.pf'):
key = tuple(entry[:-3].split('.'))
fn = os.path.join(dirname, entry)
resp = guts.load(filename=fn)
responses[key] = resp
return responses
def local_magnitude(self, distance, amplitude):
return num.log10(amplitude*1.0e9) + \
self.const_a*num.log10(distance/km) + \
self.const_b*distance/km + self.const_c
def get_response(self, nslc):
if self._responses is None:
self._responses = self.read_responses(self.input_directory())
n, s, l, c = nslc
for k in [(n, s, l, c), (n, s, c), (s, c), (s,)]:
if k in self._responses:
return self._responses[k]
self.fail(
'no response information available for trace %s.%s.%s.%s' % nslc)
def get_traces(self, event, stations, trace_selector, tpad):
p = self.get_pile()
trace_selector_viewer = self.get_viewer_trace_selector('visible')
if self.time_window == 'distance dependant':
for station in stations:
distance = orthodrome.distance_accurate50m(event, station)
tmin = distance / self.vmax
tmax = (distance + event.depth) / self.vmin
for trs in p.chopper(
tmin=event.time + tmin,
tmax=event.time + tmax,
tpad=tpad,
trace_selector=lambda tr: (
trace_selector(tr) and
trace_selector_viewer(tr) and
tr.nslc_id[:3] == station.nsl())):
for tr in trs:
yield tr
elif self.time_window == 'fixed':
tmin = 0.
tmax = self.duration_fixed
for trs in p.chopper(
tmin=event.time + tmin,
tmax=event.time + tmax,
tpad=tpad,
trace_selector=lambda tr: (
trace_selector(tr) and
trace_selector_viewer(tr))):
for tr in trs:
yield tr
else:
for trs in self.chopper_selected_traces(
fallback=True, tpad=tpad,
trace_selector=trace_selector, mode='inview'):
for tr in trs:
yield tr
def call(self):
self.cleanup()
if self.apply_to == 'active event':
event, _ = self.get_active_event_and_stations()
events = [event]
elif self.apply_to == 'selected events':
events = [m.get_event() for m in self.get_selected_event_markers()]
elif self.apply_to == 'all events':
events = []
for m in self.get_markers():
if isinstance(m, EventMarker):
events.append(m.get_event())
events.sort(key=lambda ev: ev.time)
if not events:
self.fail('no event selected')
if self.time_window == 'visible / selected' and len(events) != 1:
self.fail('cannot work with multiple events with "visible / '
'selected" time window setting')
stations_dict = dict((s.nsl(), s) for s in self.get_stations())
if len(stations_dict) == 0:
self.fail('no station information found')
markers = []
local_magnitudes = []
viewer = self.get_viewer()
fmin = viewer.highpass
fmax = viewer.lowpass
if not fmin or not fmax:
self.fail('Main Controls Highpass and Lowpass filters have to be set') # noqa
for event in events:
mags = defaultdict(list)
tpad = 2./fmin
def trace_selector(tr):
c = tr.channel.upper()
return c.endswith('E') or c.endswith('N') or \
tr.location.endswith('_rest')
distances = {}
rest_traces = []
event2 = copy.deepcopy(event)
for tr in self.get_traces(
event, stations_dict.values(), trace_selector, tpad):
nslc = tr.nslc_id
try:
tr.highpass(4, fmin, nyquist_exception=True)
tr.lowpass(4, fmax, nyquist_exception=True)
except trace.AboveNyquist as e:
self.fail(str(e))
try:
station = stations_dict[nslc[:3]]
except KeyError as e:
print(e)
continue
if self.needs_restitution:
resp = self.get_response(nslc)
try:
tr_vel = tr.transfer(
tfade=tpad,
freqlimits=(
fmin*0.5, fmin,
fmax, fmax*2.0),
transfer_function=resp,
invert=True)
except trace.TraceTooShort as e:
self.fail(str(e))
continue
else:
try:
tr_vel = tr.transfer(
tfade=tpad,
freqlimits=(
fmin*0.5, fmin,
fmax, fmax*2.0),
transfer_function=wood_anderson_response,
invert=False)
except trace.TraceTooShort as e:
self.fail(str(e))
continue
distance = orthodrome.distance_accurate50m(event, station)
tr_vel.set_codes(location=tr_vel.location+'_rest')
tr_vel.meta = dict(tabu=True)
t_of_max, amplitude = tr_vel.absmax()
if self.show_restituded_traces:
rest_traces.append(tr_vel)
m_nslc = tr_vel.nslc_id
else:
m_nslc = tr.nslc_id
mag = self.local_magnitude(distance, amplitude)
if self.show_markers:
markers.append(PhaseMarker(
[m_nslc],
t_of_max, t_of_max, 1, phasename='%3.1f' % mag,
event=event2))
mags[nslc[:2]].append(mag)
distances[nslc[:2]] = distance
if not mags:
continue
if rest_traces:
self.add_traces(rest_traces)
for k in mags:
mags[k] = max(mags[k])
local_magnitude = round(num.median(list(mags.values())), 1)
if self.show_plot:
data = []
for k in mags:
data.append((distances[k], mags[k]))
dists, mags_arr = num.array(data).T
dists /= km
fig = self.figure()
axes = fig.add_subplot(1, 1, 1)
axes.plot(dists, mags_arr, 'o', color=to01(graph_colors[0]))
for x, y, label in zip(dists, mags_arr, mags.keys()):
axes.text(x, y, '.'.join(label))
axes.axhline(local_magnitude, color=to01(graph_colors[0]))
mag_std = num.std(list(mags.values()))
msg = 'local magnitude: %s, std: %s' % \
(round(local_magnitude, 1),
round(mag_std, 1))
axes.text(max(dists), local_magnitude, msg,
verticalalignment='bottom',
horizontalalignment='right')
axes.axhspan(
local_magnitude-mag_std,
local_magnitude+mag_std,
alpha=0.1)
axes.set_xlabel('Distance [km]')
axes.set_ylabel('Local Magnitude')
fig.canvas.draw()
local_magnitudes.append(local_magnitude)
if self.modify_inplace:
event.magnitude = local_magnitude
if markers:
self.add_markers(markers)
if not local_magnitudes:
self.fail('no results')
if self.do_show_message:
self.show_message('Magnitude', ', '.join(
'%3.1f' % mag for mag in local_magnitudes))
def __snufflings__():
return [LocalMagnitudeSnuffling()]