forked from pyrocko/contrib-snufflings
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathspectrogram.py
295 lines (219 loc) · 8.15 KB
/
spectrogram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import math
from pyrocko.gui.snuffling import Snuffling, Param, Choice, Switch
import numpy as num
from mpl_toolkits.axes_grid1 import make_axes_locatable
from matplotlib.colors import LinearSegmentedColormap
from matplotlib import cm
from pyrocko import plot, util
def to01(c):
return c[0]/255., c[1]/255., c[2]/255.
def desat(c, a):
cmean = (c[0] + c[1] + c[2]) / 3.
return tuple(cc*a + cmean*(1.0-a) for cc in c)
name_to_taper = {
'Hanning': num.hanning,
'Hamming': num.hamming,
'Blackman': num.blackman,
'Bartlett': num.bartlett}
cmap_colors = [plot.tango_colors[x] for x in [
'skyblue1', 'chameleon1', 'butter1', 'orange1', 'scarletred1', 'plum3']]
name_to_cmap = {
'spectro': LinearSegmentedColormap.from_list(
'spectro', [desat(to01(c), 0.8) for c in cmap_colors])}
def get_cmap(name):
if name in name_to_cmap:
return name_to_cmap[name]
else:
return cm.get_cmap(name)
class Spectrogram(Snuffling):
'''
<html>
<body>
<h1>Plot spectrogram</h1>
<p>Plots a basic spectrogram.</p>
</body>
</html>
'''
def setup(self):
'''Customization of the snuffling.'''
self.set_name('Spectrogram')
self.add_parameter(
Param('Window length [s]:', 'twin', 100, 0.1, 10000.))
self.add_parameter(
Param('Overlap [%]:', 'overlap', 75., 0., 99.))
self.add_parameter(
Switch('Save figure', 'save', False))
self.add_parameter(
Choice('Taper function', 'taper_name', 'Hanning',
['Hanning', 'Hamming', 'Blackman', 'Bartlett']))
self.add_parameter(
Choice('Color scale', 'color_scale', 'log',
['log', 'sqrt', 'lin']))
self.add_parameter(
Choice('Color table', 'ctb_name', 'spectro',
['spectro', 'rainbow']))
self.add_trigger('Save plot data', self.save_data)
self.set_live_update(False)
self._tapers = {}
def get_taper(self, name, n):
taper_key = (name, n)
if taper_key not in self._tapers:
self._tapers[taper_key] = name_to_taper[name](n)
return self._tapers[taper_key]
def extract(self):
by_nslc = {}
tpad = self.twin * self.overlap/100. * 0.5
tinc = self.twin - 2 * tpad
times = []
for traces in self.chopper_selected_traces(
tinc=tinc, tpad=tpad, want_incomplete=False, fallback=True):
for tr in traces:
nslc = tr.nslc_id
nwant = int(math.floor((tinc + 2*tpad) / tr.deltat))
if nwant != tr.data_len():
if tr.data_len() == nwant + 1:
tr.set_ydata(tr.get_ydata()[:-1])
else:
continue
tr.ydata = tr.ydata.astype(num.float)
tr.ydata -= tr.ydata.mean()
win = self.get_taper(self.taper_name, tr.data_len())
tr.ydata *= win
f, a = tr.spectrum(pad_to_pow2=True)
df = f[1] - f[0]
a = num.abs(a)**2
a *= tr.deltat * 2. / (df*num.sum(win**2))
a[0] /= 2.
a[a.size//2] /= 2.
if nslc not in by_nslc:
by_nslc[nslc] = []
tmid = 0.5*(tr.tmax + tr.tmin)
by_nslc[nslc].append((tmid, f, a))
times.append(tmid)
if not by_nslc:
self.fail('No complete data windows could be exctracted for '
'given selection')
return by_nslc, times, tinc
def call(self):
'''Main work routine of the snuffling.'''
by_nslc, times, tinc = self.extract()
fframe = self.figure_frame()
fig = fframe.gcf()
nslcs = sorted(by_nslc.keys())
p = None
ncols = int(len(nslcs) / 5 + 1)
nrows = (len(nslcs)-1) / ncols + 1
tmin = min(times)
tmax = max(times)
nt = int(round((tmax - tmin) / tinc)) + 1
t = num.linspace(tmin, tmax, nt)
if (tmax - tmin) < 60:
tref = util.day_start(tmin)
tref += math.floor((tmin-tref) / 60.) * 60.
t -= tref
tunit = 's'
elif (tmax - tmin) < 3600:
tref = util.day_start(tmin)
tref += math.floor((tmin-tref) / 3600.) * 3600.
t -= tref
t /= 60.
tunit = 'min'
else:
tref = util.day_start(tmin)
t -= tref
t /= 3600.
tunit = 'h'
axes = []
for i, nslc in enumerate(nslcs):
p = fig.add_subplot(nrows, ncols, i+1, sharex=p, sharey=p)
axes.append(p)
group = by_nslc[nslc]
f = group[0][1]
nf = f.size
a = num.zeros((nf, nt), dtype=num.float)
a.fill(num.nan)
for (t1, _, a1) in group:
it = int(round((t1 - tmin) / tinc))
if it < 0 or nt <= it:
continue
a[:, it] = a1
if self.color_scale == 'log':
a = num.log(a)
label = 'log PSD'
elif self.color_scale == 'sqrt':
a = num.sqrt(a)
label = 'sqrt PSD'
else:
label = 'PSD'
a = num.ma.masked_invalid(a)
min_a = num.min(a)
max_a = num.max(a)
mean_a = num.mean(a)
std_a = num.std(a)
zmin = max(min_a, mean_a - 3.0 * std_a)
zmax = min(max_a, mean_a + 3.0 * std_a)
pcm = p.pcolormesh(t, f, a, cmap=get_cmap(self.ctb_name),
vmin=zmin, vmax=zmax)
fmin = 2.0 / self.twin
fmax = f[-1]
p.set_title(
'.'.join(x for x in nslc if x),
ha='right',
va='top',
x=0.99,
y=0.9)
p.grid()
p.set_yscale('log')
divider = make_axes_locatable(p)
cax = divider.append_axes('right', size='2%', pad=0.2)
cbar = fig.colorbar(pcm, cax=cax)
cbar.set_label(label)
if i/ncols == (len(nslcs)-1)/ncols:
p.set_xlabel('Time since %s [%s]' %
(util.time_to_str(tref, format='%Y-%m-%d %H:%M'),
tunit))
if i % ncols == 0:
p.set_ylabel('Frequency [Hz]')
p.set_xlim(t[0], t[-1])
p.set_ylim(fmin, fmax)
for i, p in enumerate(axes):
if i/ncols != (len(nslcs)-1)/ncols:
for t in p.get_xticklabels():
t.set_visible(False)
if i % ncols != 0:
for t in p.get_yticklabels():
t.set_visible(False)
else:
tls = p.get_yticklabels()
if len(tls) > 8:
for t in tls[1::2]:
t.set_visible(False)
try:
fig.tight_layout()
except AttributeError:
pass
if self.save:
fig.savefig(self.output_filename(dir='psd.pdf'))
fig.canvas.draw()
def save_data(self):
by_nslc, times, tinc = self.extract()
nslcs = sorted(by_nslc.keys())
default_fn_template = \
'spectrogram_%(network)s.%(station)s.%(location)s.%(channel)s.txt'
fn_template = self.output_filename(
'Template for output filenames', default_fn_template)
for i, nslc in enumerate(nslcs):
fn = fn_template % {
'network': nslc[0],
'station': nslc[1],
'location': nslc[2],
'channel': nslc[3]}
with open(fn, 'w') as out:
for tmid, f, a in by_nslc[nslc]:
stmid = util.time_to_str(tmid)
n = f.size
for i in range(n):
out.write('%s %12.6e %12.6e\n' % (stmid, f[i], a[i]))
def __snufflings__():
'''Returns a list of snufflings to be exported by this module.'''
return [Spectrogram()]