-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain.py
137 lines (108 loc) · 5.26 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import math
import cv2
import random as rd
import numpy as np
import matplotlib.pyplot as plt
from calibration import draw_keypoints_and_match, drawlines, RANSAC_F_matrix, calculate_E_matrix, extract_camerapose, disambiguate_camerapose
from rectification import rectification
from correspondence import ssd_correspondence
from depth import disparity_to_depth
# Its all about resolution - Its a trade off between resolution and time of computation
def main():
number = int(input("Please enter the dataset number (1/2/3) to use for calculating the depth map\n"))
img1 = cv2.imread(f"Dataset{number}/im0.png", 0)
img2 = cv2.imread(f"Dataset{number}/im1.png", 0)
width = int(img1.shape[1]* 0.3) # 0.3
height = int(img1.shape[0]* 0.3) # 0.3
img1 = cv2.resize(img1, (width, height), interpolation = cv2.INTER_AREA)
# img1 = cv2.GaussianBlur(img1,(5,5),0)
img2 = cv2.resize(img2, (width, height), interpolation = cv2.INTER_AREA)
# img2 = cv2.GaussianBlur(img2,(5,5),0)
#__________________Camera Parameters________________________________
K11 = np.array([[5299.313, 0, 1263.818],
[0, 5299.313, 977.763],
[0, 0, 1 ]])
K12 = np.array([[5299.313, 0, 1438.004],
[0, 5299.313, 977.763 ],
[0, 0, 1 ]])
K21 = np.array([[4396.869, 0, 1353.072],
[0, 4396.869, 989.702],
[0, 0, 1]])
K22 = np.array([[4396.869, 0, 1538.86],
[0, 4396.869, 989.702],
[0, 0, 1]])
K31 = np.array([[5806.559, 0, 1429.219],
[0, 5806.559, 993.403],
[ 0, 0, 1]])
K32 = np.array([[5806.559, 0, 1543.51],
[ 0, 5806.559, 993.403],
[ 0, 0, 1]])
camera_params = [(K11, K12), (K21, K22), (K31, K32)]
while(1):
try:
list_kp1, list_kp2 = draw_keypoints_and_match(img1, img2)
#_______________________________Calibration_______________________________
F = RANSAC_F_matrix([list_kp1, list_kp2])
print("F matrix", F)
print("=="*20, '\n')
K1, K2 = camera_params[number-1]
E = calculate_E_matrix(F, K1, K2)
print("E matrix", E)
print("=="*20, '\n')
camera_poses = extract_camerapose(E)
best_camera_pose = disambiguate_camerapose(camera_poses, list_kp1)
print("Best_Camera_Pose:")
print("=="*20)
print("Roatation", best_camera_pose[0])
print()
print("Transaltion", best_camera_pose[1])
print("=="*20, '\n')
pts1 = np.int32(list_kp1)
pts2 = np.int32(list_kp2)
#____________________________Rectification________________________________
rectified_pts1, rectified_pts2, img1_rectified, img2_rectified = rectification(img1, img2, pts1, pts2, F)
break
except Exception as e:
# print("error", e)
continue
# Find epilines corresponding to points in right image (second image) and drawing its lines on left image
lines1 = cv2.computeCorrespondEpilines(rectified_pts2.reshape(-1, 1, 2), 2, F)
lines1 = lines1.reshape(-1, 3)
img5, img6 = drawlines(img1_rectified, img2_rectified, lines1, rectified_pts1, rectified_pts2)
# Find epilines corresponding to points in left image (first image) and drawing its lines on right image
lines2 = cv2.computeCorrespondEpilines(rectified_pts1.reshape(-1, 1, 2), 1, F)
lines2 = lines2.reshape(-1, 3)
img3, img4 = drawlines(img2_rectified, img1_rectified, lines2, rectified_pts2, rectified_pts1)
cv2.imwrite("left_image.png", img5)
cv2.imwrite("right_image.png", img3)
#____________________________Correspondance________________________________
disparity_map_unscaled, disparity_map_scaled = ssd_correspondence(img1_rectified, img2_rectified)
# cv2.imwrite(f"disparity_map_{number}.png", disparity_map_scaled)
# img_n = cv2.normalize(src=disparity_map_scaled, dst=None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U)
# heatmap1 = cv2.applyColorMap(img_n, cv2.COLORMAP_HOT)
# cv2.imwrite(f"disparity_heat_map_{number}.png", heatmap1)
plt.figure(1)
plt.title('Disparity Map Graysacle')
plt.imshow(disparity_map_scaled, cmap='gray')
plt.figure(2)
plt.title('Disparity Map Hot')
plt.imshow(disparity_map_scaled, cmap='hot')
#________________________________Depth______________________________________
baseline1, f1 = 177.288, 5299.313
baseline2, f2 = 144.049, 4396.869
baseline3, f3 = 174.019, 5806.559
params = [(baseline1, f1), (baseline2, f2), (baseline3, f3)]
baseline, f = params[number-1]
depth_map, depth_array = disparity_to_depth(baseline, f, disparity_map_unscaled)
plt.figure(3)
plt.title('Depth Map Graysacle')
plt.imshow(depth_map, cmap='gray')
plt.figure(4)
plt.title('Depth Map Hot')
plt.imshow(depth_map, cmap='hot')
plt.show()
print("=="*20)
# print("Depth values", depth_array)
#____________________________________________________________________________
if __name__ == "__main__":
main()