-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlora.py
660 lines (584 loc) · 31.3 KB
/
lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
# Derived from https://github.com/microsoft/LoRA
# ------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
# ------------------------------------------------------------------------------------------
r"""
Low Ranking Adaptation for LLMs scheme.
┌───────────────────┐
┆ h ┆
└───────────────────┘
▲
|
+
/ \
┌─────────────────┐ ╭───────────────╮ Matrix initialization:
┆ ┆ \ B / B = 0
┆ pretrained ┆ \ r*d / A = N(0, sigma^2)
┆ weights ┆ ╰─────────╯
┆ ┆ | r | r - rank
┆ W e R^(d*d) ┆ | ◀─────▶ |
┆ ┆ ╭─────────╮
└─────────────────┘ / A \
▲ / d*r \
\ ╰───────────────╯
\ ▲
\ /
\ /
┌───────────────────┐
┆ x ┆
└───────────────────┘
With LoRA (Low Ranking Adaptation: https://arxiv.org/abs/2106.09685) instead of learning weights of size d*d,
we can freeze the pretrained weights and instead learn two matrices of size d*r and r*d (they will store weight updates
for the pretrained weights): the number of parameters in this case will be reduced drastically (depending on the rank of
course) yet after multiplication of matrices d*r and r*d we will get a matrix d*d which we can sum with frozen
pretrained weights and thus fine-tune the model.
The goal of this approach is to move weight updates into a separate matrix which is decomposed with
two matrices of a lower rank.
"""
import math
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Type, Union, Mapping
import torch
import torch.nn as nn
from torch.nn import functional as F
from typing_extensions import Self
class LoRALayer(nn.Module):
def __init__(self, r: int, lora_alpha: int, lora_dropout: float):
"""Store LoRA specific attributes in a class.
Args:
r: rank of the weight update matrices. To make sense of using LoRA the rank should be smaller than the rank of
the weights of the model. The rank can be as low as 1: https://arxiv.org/pdf/2106.09685.pdf (section 7.2)
lora_alpha: alpha is needed for scaling updates as alpha/r
"This scaling helps to reduce the need to retune hyperparameters when we vary r"
https://arxiv.org/pdf/2106.09685.pdf (section 4.1)
lora_dropout: dropout that is applied on the input in the LoRA branch (before multiplying by matrix A)
"""
super().__init__()
assert r >= 0
self.r = r
self.lora_alpha = lora_alpha
# Optional dropout
if lora_dropout > 0.0:
self.lora_dropout = nn.Dropout(p=lora_dropout)
else:
self.lora_dropout = lambda x: x
# Mark the weight as unmerged
self.merged = False
class LoRALinear(LoRALayer):
# LoRA implemented in a dense layer
def __init__(
self,
# ↓ this part is for pretrained weights
in_features: int,
out_features: int,
# ↓ the remaining part is for LoRA
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.0,
tasks=None,
**kwargs,
):
"""LoRA wrapper around linear class.
This class has three weight matrices:
1. Pretrained weights are stored as `self.linear.weight`
2. LoRA A matrix as `self.lora_A`
3. LoRA B matrix as `self.lora_B`
Only LoRA's A and B matrices are updated, pretrained weights stay frozen.
Args:
in_features: number of input features of the pretrained weights
out_features: number of output features of the pretrained weights
r: rank of the weight update matrices. To make sense of using LoRA the rank should be smaller than the rank of
the weights of the model. The rank can be as low as 1: https://arxiv.org/pdf/2106.09685.pdf (section 7.2)
lora_alpha: alpha is needed for scaling updates as alpha/r
"This scaling helps to reduce the need to retune hyperparameters when we vary r"
https://arxiv.org/pdf/2106.09685.pdf (section 4.1)
lora_dropout: dropout that is applied on the input in the LoRA branch (before multiplying by matrix A)
"""
super().__init__(r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout)
self.linear = torch.nn.Linear(
in_features, out_features, **kwargs)
# Actual trainable parameters
if r > 0:
self.lora_A = nn.Parameter(
self.linear.weight.new_zeros((r, in_features)))
self.lora_B = nn.Parameter(
self.linear.weight.new_zeros((out_features, r)))
self.scaling = self.lora_alpha / self.r
self.reset_parameters()
def reset_parameters(self):
"""Reset all the weights, even including pretrained ones."""
if hasattr(self, "lora_A"):
# initialize A the same way as the default for nn.Linear and B to zero
# Wondering why 'a' is equal to math.sqrt(5)?: https://github.com/pytorch/pytorch/issues/15314
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
nn.init.zeros_(self.lora_B)
def merge(self):
"""Merges the LoRA weights into the full-rank weights (W = W + delta_W)."""
if self.r > 0 and not self.merged:
# Merge the weights and mark it
self.linear.weight.data += (self.lora_B @
self.lora_A) * self.scaling
self.merged = True
def forward(self, x: torch.Tensor):
# if weights are merged or rank is less or equal to zero (LoRA is disabled) - it's only a regular nn.Linear forward pass;
# otherwise in addition do the forward pass with LoRA weights and add it's output to the output from pretrained weights
pretrained = self.linear(x)
if self.r == 0 or self.merged:
return pretrained
lora = (self.lora_dropout(x) @ self.lora_A.transpose(0, 1)
@ self.lora_B.transpose(0, 1)) * self.scaling
return pretrained + lora
class MTLoRALinear(LoRALayer):
# LoRA implemented in a dense layer
def __init__(
self,
# ↓ this part is for pretrained weights
in_features: int,
out_features: int,
# ↓ the remaining part is for LoRA
r: Union[int, Mapping[str, int]] = 0,
lora_shared_scale: float = 1.0,
lora_task_scale: float = 1.0,
lora_dropout: float = 0.0,
tasks=None,
trainable_scale_shared=False,
trainable_scale_per_task=False,
shared_mode: str = 'matrix',
**kwargs,
):
assert shared_mode in ['matrix', 'matrixv2',
'add', 'addition', 'lora_only']
if shared_mode == 'add':
shared_mode = 'addition'
if shared_mode == 'lora_only':
tasks = None
has_tasks = tasks is not None
if not has_tasks:
if shared_mode not in ['matrix']:
shared_mode = 'matrix'
if isinstance(r, int):
r = {'shared': r}
super().__init__(
r=r['shared'], lora_alpha=lora_shared_scale, lora_dropout=lora_dropout)
self.linear = torch.nn.Linear(
in_features, out_features, **kwargs)
self.tasks = tasks
self.shared_mode = shared_mode
if r['shared'] > 0:
if has_tasks:
self.lora_tasks_A = nn.ParameterDict({
task: nn.Parameter(
self.linear.weight.new_zeros((r[task], in_features)))
for task in tasks
})
self.lora_tasks_B = nn.ParameterDict({
task: nn.Parameter(
self.linear.weight.new_zeros((out_features, r[task])))
for task in tasks
})
if trainable_scale_per_task:
self.lora_task_scale = nn.ParameterDict({
task: nn.Parameter(torch.FloatTensor(
[lora_task_scale]))
for task in tasks
})
else:
self.lora_task_scale = {task: lora_task_scale[task]
for task in tasks}
if self.shared_mode == 'addition':
assert has_tasks
self.lora_norm = nn.LayerNorm(out_features)
elif self.shared_mode == 'matrix' or self.shared_mode == 'matrixv2':
self.lora_shared_A = nn.Parameter(
self.linear.weight.new_zeros((r['shared'], in_features)))
self.lora_shared_B = nn.Parameter(
self.linear.weight.new_zeros((out_features, r['shared'])))
else:
raise NotImplementedError
if trainable_scale_shared:
self.lora_shared_scale = nn.Parameter(
torch.FloatTensor([lora_shared_scale]))
else:
self.lora_shared_scale = lora_shared_scale
self.reset_parameters()
def reset_parameters(self):
"""Reset all the weights, even including pretrained ones."""
if hasattr(self, "lora_shared_A"):
# initialize A the same way as the default for nn.Linear and B to zero
# Wondering why 'a' is equal to math.sqrt(5)?: https://github.com/pytorch/pytorch/issues/15314
nn.init.kaiming_uniform_(self.lora_shared_A, a=math.sqrt(5))
nn.init.zeros_(self.lora_shared_B)
if hasattr(self, "lora_tasks_A"):
for task in self.tasks:
nn.init.kaiming_uniform_(
self.lora_tasks_A[task], a=math.sqrt(5))
nn.init.zeros_(self.lora_tasks_B[task])
def merge(self):
"""Merges the LoRA weights into the full-rank weights (W = W + delta_W)."""
raise NotImplementedError
def forward(self, x: torch.Tensor, x_tasks: Dict[str, torch.Tensor] = None):
# TODO: handle merging
pretrained = self.linear(x)
if self.r == 0:
return pretrained, None
x = self.lora_dropout(x)
if self.shared_mode == 'matrix':
lora = (x @ self.lora_shared_A.transpose(0, 1)
@ self.lora_shared_B.transpose(0, 1)) * self.lora_shared_scale
lora_tasks = {
task: pretrained + ((x if x_tasks is None else x_tasks[task]) @ self.lora_tasks_A[task].transpose(
0, 1) @ self.lora_tasks_B[task].transpose(0, 1) * self.lora_task_scale[task])
for task in self.tasks
} if self.tasks is not None else None
elif self.shared_mode == 'matrixv2':
lora = (x @ self.lora_shared_A.transpose(0, 1)
@ self.lora_shared_B.transpose(0, 1)) * self.lora_shared_scale
lora_tasks = {
task: pretrained + lora + ((x if x_tasks is None else x_tasks[task]) @ self.lora_tasks_A[task].transpose(
0, 1) @ self.lora_tasks_B[task].transpose(0, 1) * self.lora_task_scale[task])
for task in self.tasks
} if self.tasks is not None else None
elif self.shared_mode == 'addition':
lora_tasks = {
task: pretrained + ((x if x_tasks is None else x_tasks[task]) @ self.lora_tasks_A[task].transpose(
0, 1) @ self.lora_tasks_B[task].transpose(0, 1) * self.lora_task_scale[task])
for task in self.tasks
} if self.tasks is not None else None
lora = self.lora_norm(torch.sum(torch.stack(
list(lora_tasks.values()), dim=0), dim=0))
return pretrained + lora, lora_tasks
class MTLoRAQKV(LoRALayer):
def __init__(
self,
# ↓ this part is for pretrained weights
in_features: int,
out_features: int,
# ↓ the remaining part is for LoRA
r: Union[int, Mapping[str, int]] = 0,
lora_shared_scale: float = 1.0,
lora_task_scale: float = 1.0,
lora_dropout: float = 0.0,
tasks=None,
trainable_scale_shared=False,
trainable_scale_per_task=False,
shared_mode: str = 'matrix',
**kwargs,
):
if isinstance(r, int):
r = {'shared': r}
super().__init__(r=r, lora_alpha=lora_shared_scale, lora_dropout=lora_dropout)
self.tasks = tasks
self.q = MTLoRALinear(in_features, out_features, r=r, lora_shared_scale=lora_shared_scale, lora_task_scale=lora_task_scale, lora_dropout=lora_dropout,
tasks=tasks, trainable_scale_shared=trainable_scale_shared, trainable_scale_per_task=trainable_scale_per_task, shared_mode=shared_mode, **kwargs)
self.k = MTLoRALinear(in_features, out_features, r=r, lora_shared_scale=lora_shared_scale, lora_task_scale=lora_task_scale, lora_dropout=lora_dropout,
tasks=tasks, trainable_scale_shared=trainable_scale_shared, trainable_scale_per_task=trainable_scale_per_task, shared_mode=shared_mode, **kwargs)
self.v = MTLoRALinear(in_features, out_features, r=r, lora_shared_scale=lora_shared_scale, lora_task_scale=lora_task_scale, lora_dropout=lora_dropout,
tasks=tasks, trainable_scale_shared=trainable_scale_shared, trainable_scale_per_task=trainable_scale_per_task, shared_mode=shared_mode, **kwargs)
def reset_parameters(self):
self.q.reset_parameters()
self.k.reset_parameters()
self.v.reset_parameters()
def merge(self):
raise NotImplementedError
def forward(self, x: torch.Tensor, x_tasks: Dict[str, torch.Tensor] = None):
return (torch.cat([self.q(x, x_tasks)[0], self.k(x, x_tasks)[0], self.v(x, x_tasks)[0]], dim=-1),
{task: torch.cat([self.q(x, x_tasks)[1][task], self.k(x, x_tasks)[1][task], self.v(x, x_tasks)[1][task]], dim=-1) for task in self.tasks} if self.tasks is not None else None)
class LoRAQKVLinear(LoRALinear):
# LoRA implemented in a dense layer
def __init__(
self,
# ↓ this part is for pretrained weights
in_features: int,
out_features: int,
# ↓ the remaining part is for LoRA
n_head: int,
n_query_groups: int,
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.0,
enable_lora: Union[bool, Tuple[bool, bool, bool]] = False,
**kwargs,
):
"""LoRA wrapper around linear class that is used for calculation of q, k and v matrices.
This class has three weight matrices:
1. Pretrained weights are stored as `self.linear.weight`
2. LoRA A matrix as `self.lora_A`
3. LoRA B matrix as `self.lora_B`
Only LoRA's A and B matrices are updated, pretrained weights stay frozen.
Args:
in_features: number of input features of the pretrained weights
out_features: number of output features of the pretrained weights
n_head: number of attention heads
n_query_groups: number of query groups (see diagram in `lit_gpt/config.py`)
r: rank of the weight update matrices. To make sense of using LoRA the rank should be smaller than the rank of
the weights of the model. The rank can be as low as 1: https://arxiv.org/pdf/2106.09685.pdf (section 7.2)
lora_alpha: alpha is needed for scaling updates as alpha/r
"This scaling helps to reduce the need to retune hyperparameters when we vary r"
https://arxiv.org/pdf/2106.09685.pdf (section 4.1)
lora_dropout: dropout that is applied on the input in the LoRA branch (before multiplying by matrix A)
enable_lora: MergeLinear class is for attention mechanism where qkv are calculated with a single weight matrix. If we
don't want to apply LoRA we can set it as False. For example if we want to apply LoRA only to `query`
and `value` but keep `key` without weight updates we should pass `[True, False, True]`
"""
super(LoRALinear, self).__init__(
r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout)
self.linear = torch.nn.Linear(in_features, out_features, **kwargs)
self.n_head = n_head
self.n_query_groups = n_query_groups
if isinstance(enable_lora, bool):
enable_lora = [enable_lora] * 3
assert len(enable_lora) == 3
self.enable_lora = enable_lora
# Actual trainable parameters
# To better understand initialization let's imagine that we have such parameters:
# ⚬ in_features: 128 (embeddings_size)
# ⚬ out_features: 384 (3 * embedding_size)
# ⚬ r: 2
# ⚬ enable_lora: [True, False, True]
if r > 0 and any(enable_lora):
self.lora_A = nn.Parameter(self.linear.weight.new_zeros(
(r * sum(enable_lora), in_features))) # (4, 128)
enable_q, enable_k, enable_v = enable_lora
self.kv_embd_size = self.linear.in_features // (
n_head // n_query_groups)
# qkv_shapes will be used to split a tensor with weights correctly
qkv_shapes = (
self.linear.in_features * enable_q,
self.kv_embd_size * enable_k,
self.kv_embd_size * enable_v,
)
self.qkv_shapes = [s for s in qkv_shapes if s]
self.lora_B = nn.Parameter(self.linear.weight.new_zeros(
sum(self.qkv_shapes), r)) # (256, 2))
# Notes about shapes above
# - self.lora_A has shape (4, 128): 4 because rank is 2 and LoRA is applied only to two matrices;
# 128 is the input size of the x (embedding size). (4, 128) and not (128, 4) because later on in
# F.linear function weights are automatically transposed. In addition conv1d requires channels to
# be before seq length
# - self.lora_B has shape (256, 2): 256 because LoRA is applied only to two matrices, so the output is
# 128*2; 2 tells to have two channels per group for group convolution
# Scaling:
# This balances the pretrained model`s knowledge and the new task-specific adaptation
# https://lightning.ai/pages/community/tutorial/lora-llm/
# So, set alpha to 1.0 to fully add LoRA. If the LoRA seems to have too much effect (i.e., overfitted), set
# alpha to lower value. If the LoRA seems to have too little effect, set alpha to higher than 1.0. You can
# tune these values to your needs. This value can be even slightly greater than 1.0!
# https://github.com/cloneofsimo/lora
self.scaling = self.lora_alpha / self.r
# Compute the indices
# Indices are needed to properly pad weight updates with zeros. If we want to fine-tune queries and values,
# but not keys, then the weights update should be:
#
# [[ΔW,ΔW,ΔW, ..., 0,0,0, ..., ΔW,ΔW,ΔW,],
# [....................................],
# [ΔW,ΔW,ΔW, ..., 0,0,0, ..., ΔW,ΔW,ΔW,]]
# ↑ ↑ ↑
# ________________________________________
# | query | key | value |
# ----------------------------------------
self.lora_ind = []
if enable_q:
self.lora_ind.extend(range(0, self.linear.in_features))
if enable_k:
self.lora_ind.extend(
range(self.linear.in_features, self.linear.in_features + self.kv_embd_size))
if enable_v:
self.lora_ind.extend(
range(self.linear.in_features + self.kv_embd_size, self.linear.out_features))
self.reset_parameters()
def zero_pad(self, x: torch.Tensor) -> torch.Tensor:
"""Properly pad weight updates with zeros.
If, based on `self.enable_lora`, we want to fine-tune queries and values, but not keys,
then the weights update should be:
[[ΔW,ΔW,ΔW, ..., 0,0,0, ..., ΔW,ΔW,ΔW,],
[....................................],
[ΔW,ΔW,ΔW, ..., 0,0,0, ..., ΔW,ΔW,ΔW,]]
↑ ↑ ↑
________________________________________
| query | key | value |
----------------------------------------
Args:
x: tensor with weights update that will be padded with zeros if necessary
Returns:
A tensor with weight updates and zeros for deselected q, k or v
"""
# we need to do zero padding only if LoRA is disabled for one of QKV matrices
if all(self.enable_lora):
return x
# Let's image that:
# ⚬ input x has shape (64, 64, 256): (batch_size, sequence_length, embeddings_size)
# ⚬ embeddings_size: 128
# ⚬ self.linear.out_features: 384 (3 * embeddings_size)
# ⚬ enable_lora: [True, False, True]
# Then x has embeddings_size of 256 (2 * 128 as enable_lora only for query and value, not keys) and expected
# embeddings_size is 384 (self.linear.out_features), so that means that we need to pad from 256 to 384 with zeros, but
# only for key updates (this is where self.lora_ind comes in handy)
# Note: double transpose (in the beginning and in the end) is basically a guard for two-dimensional tensors
# for example when we want to merge/unmerge LoRA weights and pretrained weights
x = x.transpose(0, 1)
result = x.new_zeros(
(*x.shape[:-1], self.linear.out_features)) # (64, 64, 384)
result = result.view(-1, self.linear.out_features) # (4096, 384)
result = result.index_copy(
1, torch.tensor(
self.lora_ind, device=result.device), x.reshape(-1, sum(self.qkv_shapes))
) # (4096, 256)
# (64, 64, 384)
return result.view((*x.shape[:-1], self.linear.out_features)).transpose(0, 1)
def conv1d(self, input: torch.Tensor, weight: torch.Tensor) -> torch.Tensor:
"""An extension of the `torch.nn.functional.conv1d` function with a logic specific to grouped queries.
If the number of heads is equal to the number of query groups - grouped queries are disabled
(see scheme in `lit_gpt/config.py:Config`). In this case the combined QKV matrix consists of equally sized
query, key and value parts, which means we can utilize `groups` argument from `conv1d`: with this argument the
input and weight matrices will be splitted in equally sized parts and applied separately (like having multiple
conv layers side by side).
Otherwise QKV matrix consists of unequally sized parts and thus we have to split input and weight matrices manually,
apply each part of the weight matrix to the corresponding input's part and concatenate the result.
Args:
input: input matrix of shape (B, C, T)
weight: weight matrix of shape (C_output, rank, 1).
"C_output" is defined as a sum of embedding sizes for each enabled LoRA layer (see init method of the class).
Returns:
A tensor with a shape (B, C_output, T)
"""
if self.n_head == self.n_query_groups:
# (B, C_output, T)
return F.conv1d(input, weight, groups=sum(self.enable_lora))
# Notation:
# ⚬ N: number of enabled LoRA layers (self.enable_lora)
# ⚬ C_output': embeddings size for each LoRA layer (not equal in size)
# ⚬ r: rank of all LoRA layers (equal in size)
input_splitted = input.chunk(
sum(self.enable_lora), dim=1) # N * (B, C // N, T)
weight_splitted = weight.split(
self.qkv_shapes) # N * (C_output', r, 1)
return torch.cat(
# (B, C_output', T)
[F.conv1d(a, b) for a, b in zip(input_splitted, weight_splitted)], dim=1
) # (B, C_output, T)
def merge(self):
"""Merges the LoRA weights into the full-rank weights (W = W + delta_W)."""
# Let's assume that:
# ⚬ self.linear.weight.data: (384, 128) or (3 * embedding_size, embedding_size)
# ⚬ self.lora_A.data: (4, 128)
# ⚬ self.lora_B.data: (256, 2)
if self.r > 0 and any(self.enable_lora) and not self.merged:
delta_w = self.conv1d(
self.lora_A.data.unsqueeze(0), # (4, 128) -> (1, 4, 128)
self.lora_B.data.unsqueeze(-1), # (256, 2) -> (256, 2, 1)
).squeeze(
0
) # (1, 4, 128) @ (256, 2, 1) -> (1, 256, 128) -> (256, 128)
# W = W + delta_W (merge)
# (256, 128) after zero_pad (384, 128)
self.linear.weight.data += self.zero_pad(delta_w * self.scaling)
self.merged = True
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Do the forward pass.
If LoRA's weights are merged with pretrained ones then it's a simple matrix multiplication.
If not, then multiply pretrained weights with input, apply LoRA on input and do summation.
Args:
x: input tensor of shape (batch_size, context_length, embedding_size)
Returns:
Output tensor of shape (batch_size, context_length, 3 * embedding_size)
"""
# Let's assume that:
# ⚬ x: (64, 64, 128) or (batch_size, context_length, embedding_size)
# ⚬ self.linear.weight: (384, 128) or (3 * embedding_size, embedding_size)
# ⚬ self.lora_A.data: (4, 128)
# ⚬ self.lora_B.data: (256, 2)
# if weights are merged or LoRA is disabled (r <= 0 or all `enable_lora` are False) - it's only a regular nn.Linear forward pass;
# otherwise in addition do the forward pass with LoRA weights and add it's output to the output from pretrained weights
pretrained = self.linear(x)
if self.r == 0 or not any(self.enable_lora) or self.merged:
return pretrained
# (64, 64, 128) @ (4, 128) -> (64, 64, 4)
after_A = F.linear(self.lora_dropout(x), self.lora_A)
# For F.conv1d:
# ⚬ input: input tensor of shape (mini-batch, in_channels, iW)
# ⚬ weight: filters of shape (out_channels, in_channels/groups, kW)
after_B = self.conv1d(
after_A.transpose(-2, -1), # (64, 64, 4) -> (64, 4, 64)
self.lora_B.unsqueeze(-1), # (256, 2) -> (256, 2, 1)
).transpose(
-2, -1
) # (64, 4, 64) @ (256, 2, 1) -> (64, 256, 64) -> (64, 64, 256)
# (64, 64, 256) after zero_pad (64, 64, 384)
lora = self.zero_pad(after_B) * self.scaling
return pretrained + lora
def mark_only_lora_as_trainable(model: nn.Module, bias: str = "none", freeze_patch_embed: bool = False, freeze_norm: bool = False, free_relative_bias: bool = False, freeze_downsample_reduction=False) -> None:
"""Freeze all modules except LoRA's and depending on 'bias' value unfreezes bias weights.
Args:
model: model with LoRA layers
bias:
``"none"``: all bias weights will be frozen,
``"lora_only"``: only bias weight for LoRA layers will be unfrozen,
``"all"``: all bias weights will be unfrozen.
Raises:
NotImplementedError: if `bias` not in ["none", "lora_only", "all"]
"""
def lora_filter(key): return "lora_" in key
def patch_embed_filter(
key): return not freeze_patch_embed and "patch_embed" in key
def norm_filter(key): return not freeze_norm and "norm" in key
def downsample_reduction_filter(
key): return not freeze_downsample_reduction and "downsample.reduction" in key
def relative_position_bias_filter(
key): return not free_relative_bias and "relative_position_bias_table" in key
def all_filters(key):
return lora_filter(key) or patch_embed_filter(key) or norm_filter(key) or downsample_reduction_filter(key) or relative_position_bias_filter(key)
print(f"LoRA bias mode: {bias}")
print(f"LoRA Freeze patch_embed: {freeze_patch_embed}")
print(f"LoRA Freeze norm: {freeze_norm}")
print(f"LoRA Freeze downsample_reduction: {freeze_downsample_reduction}")
print(f"LoRA Freeze relative_position_bias: {free_relative_bias}")
# freeze all layers except LoRA's
for n, p in model.named_parameters():
if not all_filters(n):
p.requires_grad = False
# depending on the `bias` value unfreeze bias weights
if bias == "none":
return
if bias == "all":
for n, p in model.named_parameters():
if "bias" in n:
p.requires_grad = True
elif bias == "lora_only":
for m in model.modules():
if isinstance(m, LoRALayer) and hasattr(m, "bias") and m.bias is not None:
m.bias.requires_grad = True
else:
raise NotImplementedError
def lora_filter(key: str, value: Any) -> bool:
return "lora_" in key
def merge_lora_weights(model) -> None:
"""Merge LoRA weights into the full-rank weights to speed up inference."""
for module in model.modules():
if isinstance(module, LoRALinear):
module.merge()
def map_old_state_dict_weights(state_dict: Dict, mapping: Mapping, prefix: str, split_qkv: bool = False) -> Dict:
unmatched_keys = []
for checkpoint_name, attribute_name in mapping.items():
full_checkpoint_name = prefix + checkpoint_name
if full_checkpoint_name in state_dict:
full_attribute_name = prefix + attribute_name
weights = state_dict.pop(
full_checkpoint_name)
last_four = ".".join(full_attribute_name.split(".")[-4:])
if split_qkv and last_four in ["attn.qkv.linear.weight", "attn.qkv.linear.bias"]:
w_q, w_k, w_v = torch.chunk(weights, chunks=3)
weight_bias = last_four.split(".")[-1]
full_attribute_name_without_suffix = ".".join(full_attribute_name.split(".")[
:-2])
state_dict[f"{full_attribute_name_without_suffix}.q.linear.{weight_bias}"] = w_q
state_dict[f"{full_attribute_name_without_suffix}.k.linear.{weight_bias}"] = w_k
state_dict[f"{full_attribute_name_without_suffix}.v.linear.{weight_bias}"] = w_v
else:
state_dict[full_attribute_name] = weights
else:
unmatched_keys.append(checkpoint_name)
if len(unmatched_keys) > 0:
print(
f"WARNING: The following keys from the checkpoint were not mapped: {unmatched_keys}")
return state_dict