-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
222 lines (167 loc) · 8.11 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import tensorflow as tf
from tensorflow.python.data.experimental import AUTOTUNE
_downgrades_a = ['bicubic', 'unknown']
_downgrades_b = ['mild', 'difficult']
class DIV2K:
def __init__(self,
scale=2,
subset='train',
downgrade='bicubic',
images_dir='.div2k/images',
caches_dir='.div2k/caches'):
self._ntire_2018 = True
_scales = [2, 3, 4, 8]
if scale in _scales:
self.scale = scale
else:
raise ValueError(f'scale must be in ${_scales}')
if subset == 'train':
self.image_ids = range(1, 801)
elif subset == 'valid':
self.image_ids = range(801, 901)
else:
raise ValueError("subset must be 'train' or 'valid'")
if scale == 8 and downgrade != 'bicubic':
raise ValueError(f'scale 8 only allowed for bicubic downgrade')
if downgrade in _downgrades_b and scale != 4:
raise ValueError(f'{downgrade} downgrade requires scale 4')
if downgrade == 'bicubic' and scale == 8:
self.downgrade = 'x8'
elif downgrade in _downgrades_b:
self.downgrade = downgrade
else:
self.downgrade = downgrade
self._ntire_2018 = False
self.subset = subset
self.images_dir = images_dir
self.caches_dir = caches_dir
os.makedirs(images_dir, exist_ok=True)
os.makedirs(caches_dir, exist_ok=True)
def __len__(self):
return len(self.image_ids)
def dataset(self, batch_size=16, repeat_count=None, random_transform=True, all_distortions=False):
ds = tf.data.Dataset.zip((self.lr_dataset(all_distortions=all_distortions),
self.hr_dataset(all_distortions=all_distortions)))
if random_transform:
ds = ds.map(lambda lr, hr: random_crop(lr, hr, scale=self.scale), num_parallel_calls=AUTOTUNE)
ds = ds.map(random_rotate, num_parallel_calls=AUTOTUNE)
ds = ds.map(random_flip, num_parallel_calls=AUTOTUNE)
ds = ds.batch(batch_size)
ds = ds.repeat(repeat_count)
ds = ds.prefetch(buffer_size=AUTOTUNE)
return ds
def hr_dataset(self, all_distortions=False):
if not os.path.exists(self._hr_images_dir()):
download_archive(self._hr_images_archive(), self.images_dir, extract=True)
if all_distortions:
assert self.scale == 4, "\"all_distortions\" mode is only available for scale 4"
ds = self._images_dataset(self._all_hr_image_files()).cache(self._hr_cache_file())
else:
ds = self._images_dataset(self._hr_image_files()).cache(self._hr_cache_file())
if not os.path.exists(self._hr_cache_index()):
self._populate_cache(ds, self._hr_cache_file())
return ds
def lr_dataset(self, all_distortions=False):
if all_distortions:
distortions = _downgrades_a + _downgrades_b
else:
distortions = [self.downgrade]
# Download the data if needed
for distortion in distortions:
if not os.path.exists(self._lr_images_dir(distortion)):
download_archive(self._lr_images_archive(distortion), self.images_dir, extract=True)
if all_distortions:
assert self.scale == 4, "\"all_distortions\" mode is only available for scale 4"
cache_file = self._all_lr_cache_file()
ds = self._images_dataset(self._all_lr_image_files()).cache(cache_file)
else:
cache_file = self._lr_cache_file()
ds = self._images_dataset(self._lr_image_files(self.downgrade)).cache(cache_file)
if not os.path.exists(self._lr_cache_index(all_distortions=all_distortions)):
self._populate_cache(ds, cache_file)
return ds
def _hr_cache_file(self):
return os.path.join(self.caches_dir, f'DIV2K_{self.subset}_HR.cache')
def _lr_cache_file(self):
return os.path.join(self.caches_dir, f'DIV2K_{self.subset}_LR_{self.downgrade}_X{self.scale}.cache')
def _all_lr_cache_file(self):
return os.path.join(self.caches_dir, f'DIV2K_{self.subset}_LR_all_X{self.scale}.cache')
def _hr_cache_index(self):
return f'{self._hr_cache_file()}.index'
def _lr_cache_index(self, all_distortions=False):
if all_distortions:
return f'{self._all_lr_cache_file()}.index'
else:
return f'{self._lr_cache_file()}.index'
def _hr_image_files(self):
images_dir = self._hr_images_dir()
return [os.path.join(images_dir, f'{image_id:04}.png') for image_id in self.image_ids]
def _lr_image_files(self, downgrade):
images_dir = self._lr_images_dir(downgrade)
return [os.path.join(images_dir, self._lr_image_file(image_id, downgrade)) for image_id in self.image_ids]
def _all_lr_image_files(self):
return [file for downgrade in _downgrades_a + _downgrades_b for file in self._lr_image_files(downgrade)]
def _all_hr_image_files(self):
# simply repeat the hr file names 4 times
return [file for _ in range(4) for file in self._hr_image_files()]
def _lr_image_file(self, image_id, downgrade):
if downgrade in _downgrades_a:
return f'{image_id:04}x{self.scale}.png'
else:
return f'{image_id:04}x{self.scale}{downgrade[0]}.png'
def _hr_images_dir(self):
return os.path.join(self.images_dir, f'DIV2K_{self.subset}_HR')
def _lr_images_dir(self, downgrade):
if downgrade in _downgrades_b:
return os.path.join(self.images_dir, f'DIV2K_{self.subset}_LR_{downgrade}')
else:
return os.path.join(self.images_dir, f'DIV2K_{self.subset}_LR_{downgrade}', f'X{self.scale}')
def _hr_images_archive(self):
return f'DIV2K_{self.subset}_HR.zip'
def _lr_images_archive(self, downgrade):
if downgrade in _downgrades_b:
return f'DIV2K_{self.subset}_LR_{downgrade}.zip'
else:
return f'DIV2K_{self.subset}_LR_{downgrade}_X{self.scale}.zip'
@staticmethod
def _images_dataset(image_files):
ds = tf.data.Dataset.from_tensor_slices(image_files)
ds = ds.map(tf.io.read_file)
ds = ds.map(lambda x: tf.image.decode_png(x, channels=3), num_parallel_calls=AUTOTUNE)
return ds
@staticmethod
def _populate_cache(ds, cache_file):
print(f'Caching decoded images in {cache_file} ...')
for _ in ds: pass
print(f'Cached decoded images in {cache_file}.')
# -----------------------------------------------------------
# Transformations
# -----------------------------------------------------------
def random_crop(lr_img, hr_img, hr_crop_size=96, scale=2):
lr_crop_size = hr_crop_size // scale
lr_img_shape = tf.shape(lr_img)[:2]
lr_w = tf.random.uniform(shape=(), maxval=lr_img_shape[1] - lr_crop_size + 1, dtype=tf.int32)
lr_h = tf.random.uniform(shape=(), maxval=lr_img_shape[0] - lr_crop_size + 1, dtype=tf.int32)
hr_w = lr_w * scale
hr_h = lr_h * scale
lr_img_cropped = lr_img[lr_h:lr_h + lr_crop_size, lr_w:lr_w + lr_crop_size]
hr_img_cropped = hr_img[hr_h:hr_h + hr_crop_size, hr_w:hr_w + hr_crop_size]
return lr_img_cropped, hr_img_cropped
def random_flip(lr_img, hr_img):
rn = tf.random.uniform(shape=(), maxval=1)
return tf.cond(rn < 0.5,
lambda: (lr_img, hr_img),
lambda: (tf.image.flip_left_right(lr_img),
tf.image.flip_left_right(hr_img)))
def random_rotate(lr_img, hr_img):
rn = tf.random.uniform(shape=(), maxval=4, dtype=tf.int32)
return tf.image.rot90(lr_img, rn), tf.image.rot90(hr_img, rn)
# -----------------------------------------------------------
# IO
# -----------------------------------------------------------
def download_archive(file, target_dir, extract=True):
source_url = f'http://data.vision.ee.ethz.ch/cvl/DIV2K/{file}'
target_dir = os.path.abspath(target_dir)
tf.keras.utils.get_file(file, source_url, cache_subdir=target_dir, extract=extract)
os.remove(os.path.join(target_dir, file))