-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnabla.py
314 lines (293 loc) · 10.9 KB
/
nabla.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import functools
import numbers
import numpy as np
#def argstodual(e):
# def decorator(func):
# @functools.wraps(func)
# def wrapper(*args, **kwargs):
# args = [Dual(arg,e) if isinstance(arg, numbers.Number) else arg for arg in args]
# for key in kwargs:
# if isinstance(kwargs[key], numbers.Number):
# kwargs[key] = Dual(kwargs[key], e)
# return func(*args, **kwargs)
# return wrapper
# return decorator
def othertodual(e):
def decorator(func):
@functools.wraps(func)
def wrapper(self, other):
if isinstance(other, numbers.Number):
other = Dual(real=other, nvars=self.nvars)
return func(self, other)
return wrapper
return decorator
#def grad(func):
# @functools.wraps(func)
# @argstodual(1)
# def wrapper(*args, **kwargs):
# return func(*args, **kwargs)
# return wrapper
def grad(*args):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
if varpos is None:
# Full gradient case
# Count numerical arguments
nvars = len([a for a in args if isinstance(a, numbers.Number)])
nvars += len([key for key in kwargs if isinstance(kwargs[key], numbers.Number)])
# Count numpy args
nvars += sum([a.size for a in args if isinstance(a, np.ndarray)])
nvars += sum([kwargs[key].size for key in kwargs if isinstance(kwargs[key], np.ndarray)])
newargs = [arg for arg in args]
i=0
for k,arg in enumerate(args):
if isinstance(arg, numbers.Number):
newargs[k] = Dual(arg, nvars=nvars, seedvar=i)
i += 1
elif isinstance(arg, np.ndarray):
# Each element is its own variable
numpytodual = np.vectorize(lambda x : Dual(x, nvars=nvars))
newargs[k] = numpytodual(arg)
flat_iter = newargs[k].flat
for elt in range(newargs[k].size):
flat_iter[elt].dual[i] = 1
i += 1
for key in kwargs:
if isinstance(kwargs[key], numbers.Number):
kwargs[key] = Dual(kwargs[key], nvars=nvars, seedvar=i)
i += 1
elif isinstance(kwargs[key], np.ndarray):
numpytodual = np.vectorize(lambda x : Dual(x, nvars=nvars))
kwargs[key] = numpytodual(kwargs[key])
flat_iter = kwargs[key].flat
for elt in range(kwargs[key].size):
flat_iter[elt].dual[i] = 1
i += 1
args = newargs
else:
#nvars = len(varpos)
nvars = 0
for i in varpos:
if isinstance(args[i], np.ndarray):
nvars += args[i].size
else:
nvars += 1
if kwargs:
raise Exception("Keyword arguments only supported for full gradient.")
newargs = [arg for arg in args]
# Replace the chosen vars in varpos with dual[i]=1
i = 0
for k in varpos:
if isinstance(args[k], np.ndarray):
#numpytodual = np.vectorize(lambda x : Dual(x, nvars=nvars, seedvar=i))
#newargs[k] = numpytodual(args[k])
# Each element is its own variable
numpytodual = np.vectorize(lambda x : Dual(x, nvars=nvars))
newargs[k] = numpytodual(args[k])
flat_iter = newargs[k].flat
for elt in range(newargs[k].size):
flat_iter[elt].dual[i] = 1
i += 1
else:
newargs[k] = Dual(args[k], nvars=nvars, seedvar=i)
i += 1
args = newargs
return func(*args, **kwargs)
return wrapper
if len(args)==1 and callable(args[0]):
# @grad with no arguments - take full gradient
varpos = None
return decorator(args[0])
elif len(args)==0:
# grad() with no arguments
varpos = None
else:
varpos = args[0]
if isinstance(varpos, numbers.Number):
varpos = [varpos]
return decorator
def dot(x, y):
ret = Dual(0.0)
for i in range(len(x)):
ret += x[i]*y[i]
return ret
class Dual:
def __init__(self, real=0, dual=None, nvars=None, seedvar=None):
self.real = real
if dual is None and nvars is None:
self.dual = np.zeros(1)
self.nvars = 1
elif nvars is None:
self.dual = np.array(dual, dtype=np.float64, ndmin=1)
self.nvars = len(self.dual)
elif dual is None:
self.dual = np.zeros(nvars)
self.nvars = nvars
else:
self.dual = np.array(dual, dtype=np.float64, ndmin=1)
self.nvars = nvars
if seedvar is not None:
self.dual[seedvar] = 1
def __add__(self, other):
otherreal = getattr(other, 'real', other)
otherdual = getattr(other, 'dual', None)
ret = Dual(self.real + otherreal, self.dual)
if otherdual is not None:
ret.dual += otherdual
return ret
def __sub__(self, other):
otherreal = getattr(other, 'real', other)
otherdual = getattr(other, 'dual', None)
ret = Dual(self. real - otherreal, self.dual)
if otherdual is not None:
ret.dual -= otherdual
return ret
def __mul__(self, other):
otherreal = getattr(other, 'real', other)
otherdual = getattr(other, 'dual', None)
ret = Dual(self.real * otherreal, self.dual * otherreal)
if otherdual is not None:
ret.dual += self.real*otherdual
return ret
def __truediv__(self, other):
otherreal = getattr(other, 'real', other)
otherdual = getattr(other, 'dual', None)
ret = Dual(self. real / otherreal, self.dual / otherreal)
if otherdual is not None:
ret.dual -= self.real*otherdual/(otherreal*otherreal)
return ret
# object.__floordiv__(self, other)
# object.__mod__(self, other)
# object.__divmod__(self, other)
def __pow__(self, other, *modulo):
if modulo:
return NotImplemented
if isinstance(other, int):
m = other
negative = (m<0)
m = abs(m)
ret = Dual(1, nvars=self.nvars)
for _ in range(m):
ret *= self
if negative:
ret = 1/ret
return ret
else:
return Dual.exp(other*Dual.log(self))
# object.__lshift__(self, other)
# object.__rshift__(self, other)
# object.__and__(self, other)
# object.__xor__(self, other)
# object.__or__(self, other)
def __radd__(self, other):
return self.__add__(other)
def __rsub__(self, other):
return -self.__sub__(other)
def __rmul__(self, other):
return self.__mul__(other)
def __rtruediv__(self, other):
return Dual(1,nvars=self.nvars)/self.__truediv__(other)
# object.__rfloordiv__(self, other)
# object.__rmod__(self, other)
# object.__rdivmod__(self, other)
def __rpow__(self, other, *modulo):
if modulo:
return NotImplemented
x = Dual(other, nvars=self.nvars)
return x.__pow__(self)
# object.__rlshift__(self, other)
# object.__rrshift__(self, other)
# object.__rand__(self, other)
# object.__rxor__(self, other)
# object.__ror__(self, other)
def __iadd__(self, other):
otherreal = getattr(other, 'real', other)
otherdual = getattr(other, 'dual', None)
self.real += otherreal
if otherdual is not None:
self.dual += other.dual
return self
def __isub__(self, other):
otherreal = getattr(other, 'real', other)
otherdual = getattr(other, 'dual', None)
self.real -= otherreal
if otherdual is not None:
self.dual -= other.dual
return self
# object.__imul__(self, other)
# object.__itruediv__(self, other)
# object.__ifloordiv__(self, other)
# object.__imod__(self, other)
# object.__ipow__(self, other[, modulo])
# object.__ilshift__(self, other)
# object.__irshift__(self, other)
# object.__iand__(self, other)
# object.__ixor__(self, other)
# object.__ior__(self, other)
def __neg__(self):
return Dual(-self.real, -self.dual)
# object.__pos__(self)
# object.__abs__(self)
# object.__invert__(self)
@othertodual(0)
def __lt__(self, other):
return self.real < other.real
@othertodual(0)
def __le__(self, other):
return self.real <= other.real
@othertodual(0)
def __gt__(self, other):
return self.real > other.real
@othertodual(0)
def __ge__(self, other):
return self.real >= other.real
def __str__(self):
return "Dual({}, {})".format(self.real, self.dual)
def __repr__(self):
return self.__str__()
# f(a + be) = f(a) + b fprime(a) e
def exp(x):
expa = np.exp(x.real)
ret = Dual(expa, x.dual*expa)
return ret
def log(x):
ret = Dual(np.log(x.real), x.dual / x.real)
return ret
def sin(x):
ret = Dual(np.sin(x.real), x.dual * np.cos(x.real))
return ret
def cos(x):
ret = Dual(np.cos(x.real), -x.dual * np.sin(x.real))
return ret
def sqrt(x):
sqrta = np.sqrt(x.real)
ret = Dual(sqrta, x.dual * 0.5/sqrta)
return ret
def minimise(f, x0, alpha = 1e-1, maxits = 1000, tolerance=1e-6, variables=None, verbose=False):
fgrad = grad(variables)(f)
x0 = np.array(x0)
zerostep = 0.0*x0 # Maintain shape of each element of x0
tolerance_sq = tolerance**2
converged = False
for it in range(maxits):
func = fgrad(*x0)
gradient = func.dual
if variables is None:
step = alpha*gradient
else:
# Only step in specified variables
step = zerostep
step[variables] = alpha*gradient
x0 = x0 - step
stepsizesq = np.dot(gradient, gradient)
#print(gradient)
if stepsizesq<tolerance_sq:
converged = True
break
if verbose and it%5==0:
print("Iter {}: fval = {}".format(it, func.real))
if not converged:
print("Warning: didn't converge in {} iterations".format(maxits))
result = fgrad(*x0)
return x0, result.real, result.dual