|
| 1 | +function w = SAM_griddata3(x,y,z,v,xi,yi,zi,method,options) |
| 2 | +%GRIDDATA3 Data gridding and hyper-surface fitting for 3-dimensional data. |
| 3 | +% |
| 4 | +% GRIDDATA3 will be removed in a future release. Use TriScatteredInterp instead. |
| 5 | +% |
| 6 | +% W = GRIDDATA3(X,Y,Z,V,XI,YI,ZI) fits a hyper-surface of the form |
| 7 | +% W = F(X,Y,Z) to the data in the (usually) nonuniformly-spaced vectors |
| 8 | +% (X,Y,Z,V). GRIDDATA3 interpolates this hyper-surface at the points |
| 9 | +% specified by (XI,YI,ZI) to produce W. |
| 10 | +% |
| 11 | +% (XI,YI,ZI) is usually a uniform grid (as produced by MESHGRID) and is |
| 12 | +% where GRIDDATA3 gets its name. |
| 13 | +% |
| 14 | +% [...] = GRIDDATA3(X,Y,Z,V,XI,YI,ZI,METHOD) where METHOD is one of |
| 15 | +% 'linear' - Tessellation-based linear interpolation (default) |
| 16 | +% 'nearest' - Nearest neighbor interpolation |
| 17 | +% |
| 18 | +% defines the type of surface fit to the data. |
| 19 | +% All the methods are based on a Delaunay triangulation of the data. |
| 20 | +% If METHOD is [], then the default 'linear' method will be used. |
| 21 | +% |
| 22 | +% [...] = GRIDDATA3(X,Y,Z,V,XI,YI,ZI,METHOD,OPTIONS) specifies a cell |
| 23 | +% array of strings OPTIONS that were previously used by Qhull. |
| 24 | +% Qhull-specific OPTIONS are no longer required and are currently ignored. |
| 25 | +% |
| 26 | +% Example: |
| 27 | +% x = 2*rand(5000,1)-1; y = 2*rand(5000,1)-1; z = 2*rand(5000,1)-1; |
| 28 | +% v = x.^2 + y.^2 + z.^2; |
| 29 | +% d = -0.8:0.05:0.8; |
| 30 | +% [xi,yi,zi] = meshgrid(d,d,d); |
| 31 | +% w = griddata3(x,y,z,v,xi,yi,zi); |
| 32 | +% Since it is difficult to visualize 4D data sets, use isosurface at 0.8: |
| 33 | +% p = patch(isosurface(xi,yi,zi,w,0.8)); |
| 34 | +% isonormals(xi,yi,zi,w,p); |
| 35 | +% set(p,'FaceColor','blue','EdgeColor','none'); |
| 36 | +% view(3), axis equal, axis off, camlight, lighting phong |
| 37 | +% |
| 38 | +% Class support for inputs X,Y,Z,V,XI,YI,ZI: double |
| 39 | +% |
| 40 | +% See also TriScatteredInterp, DelaunayTri, GRIDDATAN, DELAUNAYN, MESHGRID. |
| 41 | + |
| 42 | +% Copyright 1984-2009 The MathWorks, Inc. |
| 43 | +% $Revision: 1.11.4.11 $ $Date: 2009/09/03 05:25:18 $ |
| 44 | + |
| 45 | +if nargin < 7 |
| 46 | + error('MATLAB:griddata3:NotEnoughInputs', 'Needs at least 7 inputs.'); |
| 47 | +end |
| 48 | +if ( nargin == 7 || isempty(method) ) |
| 49 | + method = 'linear'; |
| 50 | +elseif ~strncmpi(method,'l',1) && ~strncmpi(method,'n',1) |
| 51 | + error('MATLAB:griddata3:InvalidMethod',... |
| 52 | + 'METHOD must be one of ''linear'', or ''nearest''.'); |
| 53 | +end |
| 54 | +if nargin == 9 |
| 55 | + if ~iscellstr(options) |
| 56 | + error('MATLAB:griddata3:OptsNotStringCell',... |
| 57 | + 'OPTIONS should be cell array of strings.'); |
| 58 | + end |
| 59 | + opt = options; |
| 60 | +else |
| 61 | + opt = []; |
| 62 | +end |
| 63 | + |
| 64 | +if ndims(x) > 3 || ndims(y) > 3 || ndims(z) > 3 || ndims(xi) > 3 || ndims(yi) > 3 || ndims(zi) > 3 |
| 65 | + error('MATLAB:griddata3:HigherDimArray',... |
| 66 | + 'X,Y,Z and XI,YI,ZI cannot be arrays of dimension greater than three.'); |
| 67 | +end |
| 68 | + |
| 69 | +x = x(:); y=y(:); z=z(:); v = v(:); |
| 70 | +m = length(x); |
| 71 | +if m < 3, error('MATLAB:griddata3:NotEnoughPts','Not enough unique sample points specified.'); end |
| 72 | +if m ~= length(y) || m ~= length(z) || m ~= length(v) |
| 73 | + error('MATLAB:griddata3:InputSizeMismatch',... |
| 74 | + 'X,Y,Z,V must all have the same size.'); |
| 75 | +end |
| 76 | + |
| 77 | +X = [x y z]; |
| 78 | + |
| 79 | +% Sort (x,y,z) so duplicate points can be averaged before passing to delaunay |
| 80 | + |
| 81 | +[X, ind] = sortrows(X); |
| 82 | +v = v(ind); |
| 83 | +ind = all(diff(X)'==0); |
| 84 | +if any(ind) |
| 85 | + warning('MATLAB:griddata3:DuplicateDataPoints',['Duplicate x data points ' ... |
| 86 | + 'detected: using average of the v values.']); |
| 87 | + ind = [0 ind]; |
| 88 | + ind1 = diff(ind); |
| 89 | + fs = find(ind1==1); |
| 90 | + fe = find(ind1==-1); |
| 91 | + if fs(end) == length(ind1) % add an extra term if the last one start at end |
| 92 | + fe = [fe fs(end)+1]; |
| 93 | + end |
| 94 | + |
| 95 | + for i = 1 : length(fs) |
| 96 | + % averaging v values |
| 97 | + v(fe(i)) = mean(v(fs(i):fe(i))); |
| 98 | + end |
| 99 | + X = X(~ind(2:end),:); |
| 100 | + v = v(~ind(2:end)); |
| 101 | +end |
| 102 | + |
| 103 | +if size(X,1) < 3 |
| 104 | + error('MATLAB:griddata3:NotEnoughSamplePts',... |
| 105 | + 'Not enough unique sample points specified.'); |
| 106 | +end |
| 107 | + |
| 108 | +%warning('MATLAB:griddata3:DeprecatedFunction',... |
| 109 | +% 'GRIDDATA3 will be removed in a future release. Use TriScatteredInterp instead.'); |
| 110 | + |
| 111 | +switch lower(method(1)), |
| 112 | + case 'l' |
| 113 | + w = linear(X,v,[xi(:) yi(:) zi(:)]); |
| 114 | + case 'n' |
| 115 | + w = nearest(X,v,[xi(:) yi(:) zi(:)]); |
| 116 | + otherwise |
| 117 | + error('MATLAB:griddata3:UnknownMethod', 'Unknown method.'); |
| 118 | +end |
| 119 | +w = reshape(w,size(xi)); |
| 120 | + |
| 121 | + |
| 122 | + |
| 123 | +%------------------------------------------------------------ |
| 124 | +function vi = linear(x,v,xi) |
| 125 | +%LINEAR Triangle-based linear interpolation |
| 126 | + |
| 127 | +% Reference: David F. Watson, "Contouring: A guide |
| 128 | +% to the analysis and display of spacial data", Pergamon, 1994. |
| 129 | + |
| 130 | +dt = DelaunayTri(x); |
| 131 | +scopedWarnOff = warning('off', 'MATLAB:TriRep:EmptyTri3DWarnId'); |
| 132 | +restoreWarnOff = onCleanup(@()warning(scopedWarnOff)); |
| 133 | +dtt = dt.Triangulation; |
| 134 | +if isempty(dtt) |
| 135 | + error('MATLAB:griddata3:EmptyTriangulation','Error computing Delaunay triangulation. The sample datapoints may be coplanar or collinear.'); |
| 136 | +end |
| 137 | + |
| 138 | + |
| 139 | +if(isreal(v)) |
| 140 | + F = TriScatteredInterp(dt,v); |
| 141 | + vi = F(xi); |
| 142 | +else |
| 143 | + vre = real(v); |
| 144 | + vim = imag(v); |
| 145 | + F = TriScatteredInterp(dt,vre); |
| 146 | + vire = F(xi); |
| 147 | + F.V = vim; |
| 148 | + viim = F(xi); |
| 149 | + vi = complex(vire,viim); |
| 150 | +end |
| 151 | + |
| 152 | +%------------------------------------------------------------ |
| 153 | +function vi = nearest(x,v,xi) |
| 154 | +%NEAREST Triangle-based nearest neightbor interpolation |
| 155 | + |
| 156 | +% Reference: David F. Watson, "Contouring: A guide |
| 157 | +% to the analysis and display of spacial data", Pergamon, 1994. |
| 158 | + |
| 159 | +dt = DelaunayTri(x); |
| 160 | +scopedWarnOff = warning('off', 'MATLAB:TriRep:EmptyTri3DWarnId'); |
| 161 | +restoreWarnOff = onCleanup(@()warning(scopedWarnOff)); |
| 162 | +dtt = dt.Triangulation; |
| 163 | +if isempty(dtt) |
| 164 | + error('MATLAB:griddata3:EmptyTriangulation','Error computing Delaunay triangulation. The sample datapoints may be coplanar or collinear.'); |
| 165 | +end |
| 166 | +k = dt.nearestNeighbor(xi); |
| 167 | +vi = k; |
| 168 | +d = find(isfinite(k)); |
| 169 | +vi(d) = v(k(d)); |
0 commit comments