-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlsm.c
619 lines (562 loc) · 17.9 KB
/
lsm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
#include "bloom.h"
#include "constant.h"
#include "hashlib.h"
#include "lsm.h"
#include "node.h"
#include <inttypes.h>
#include <math.h>
#include <pthread.h>
#include <stdio.h>
#include <string.h>
lsm* createLSMTree(int bucket_size, int max_level, int level_ratio, int thread_size, double false_positive_rate)
{
lsm* tree = (lsm*)malloc(sizeof(lsm));
tree->l0 = createTable(bucket_size);
tree->max_level = max_level;
tree->max_thread = thread_size;
tree->l0->currSize = 0;
g_lsm_fence_ptr = malloc(max_level * sizeof(fencePtr));
g_bloom_filter_ptr = malloc(max_level * sizeof(bloom_filter));
for(int i = 0; i < max_level; i++) {
int max_page_size = level_ratio * ((int)pow((double)level_ratio, i));
int filter_size = ceil((bucket_size * log(false_positive_rate)) / log(1 / pow(2, log(2))));
int round_up_filter_size = roundUp(filter_size, sizeof(bloom_type) * 8);
g_lsm_fence_ptr[i].curr_page_size = 0;
g_lsm_fence_ptr[i].max_page_size = max_page_size;
g_lsm_fence_ptr[i].page = NULL;
g_bloom_filter_ptr[i].page = NULL;
g_bloom_filter_ptr[i].filter_size = round_up_filter_size;
g_bloom_filter_ptr[i].max_page_size = max_page_size;
}
return tree;
}
result_set* createResultSet(uint32_t total_items)
{
result_set* result = (result_set*)malloc(sizeof(result_set));
result->total_search = total_items;
result->total_found = 0;
return result;
}
pair get(lsm* tree, int32_t key)
{
int32_t from = key;
int32_t to = key + 1;
hashTable* result = range(tree, from, to);
pair item = look(result, key);
// cleanup
for(int i = 0; i < (int)result->size; i++) {
if(result->bucket[i] != NULL) {
node* current = result->bucket[i];
node* head = NULL;
do {
head = current;
head = (node*)head->next;
free(current);
current = head;
} while(current != NULL);
}
}
free(result);
return item;
}
pair slow_get(lsm* tree, int32_t key)
{
pair value = look(tree->l0, key);
if(value.state == UNKNOWN) {
// search in disk
for(uint32_t level_n = 0; level_n < tree->max_level; level_n++) { // iterate each level
if(g_lsm_fence_ptr[level_n].curr_page_size != 0) { // if level contains data
for(int page_num = g_lsm_fence_ptr[level_n].curr_page_size - 1; page_num >= 0;
page_num--) { // iterate run from the back
if(key <= g_lsm_fence_ptr[level_n].page[page_num].max &&
key >= g_lsm_fence_ptr[level_n].page[page_num].min) {
// if key is in between the page then get the page
if(contains(level_n, page_num, key) == TRUE) {
char* filename = NULL;
getFileName(level_n, &filename);
run* page = NULL;
read_a_page(filename, page_num, tree->l0->size, &page);
for(uint32_t i = 0; i < page->header.pairCount; i++) {
if(key == page->keyValue[i].key) {
value.key = page->keyValue[i].key;
value.value = page->keyValue[i].value;
value.state = page->keyValue[i].state;
return value;
}
}
free(filename);
free(page);
filename = NULL;
page = NULL;
}
}
}
}
}
}
return value;
}
void put(lsm* tree, int32_t key, int32_t value)
{
node* newNode = createNode(key, value, VALID);
add_to_table(tree, newNode);
}
void add_to_table(lsm* tree, node* newNode)
{
add(tree->l0, newNode);
tree->l0->currSize++;
if(tree->l0->currSize == tree->l0->size) {
flush_to_disk(tree, tree->l0, tree->l0->size);
hashTable** tmpTable = (hashTable**)tree->l0->bucket;
// reset hashtable
for(uint32_t i = 0; i < tree->l0->size; i++) {
if(tree->l0->bucket[i] != NULL) {
node* current = tree->l0->bucket[i];
node* head = current;
while((current = head) != NULL) {
head = (node*)head->next;
free(current);
}
}
}
free(tmpTable);
tree->l0 = createTable(tree->l0->size);
tree->l0->currSize = 0;
}
}
void erase(lsm* tree, int32_t key)
{
int dummyInt = EMPTY_VALUE;
node* n = createNode(key, dummyInt, INVALID);
add_to_table(tree, n);
}
void run_tiered_compaction(lsm* tree)
{
if(g_lsm_fence_ptr[tree->max_level - 1].curr_page_size == g_lsm_fence_ptr[tree->max_level - 1].max_page_size) {
printf(ERROR_NO_SPACE_AVAILABLE);
exit(EXIT_FAILURE);
}
for(uint32_t i = 0; i < tree->max_level; i++) {
if(g_lsm_fence_ptr[i].curr_page_size == g_lsm_fence_ptr[i].max_page_size) {
merge_level(i, i + 1, tree->l0->size);
}
}
}
void flush_to_disk(lsm* tree, hashTable* table, uint32_t table_size)
{
// int level_n = s1;
node* sortedList = NULL;
runHeader header = merge_sort(table->bucket, table_size, &sortedList);
if(g_lsm_fence_ptr[LSM_L1].curr_page_size == g_lsm_fence_ptr[LSM_L1].max_page_size) {
run_tiered_compaction(tree);
}
char* filename = NULL;
getFileName(LSM_L1, &filename);
append_to_file(filename, header, sortedList);
free(filename);
filename = NULL;
if(g_lsm_fence_ptr[LSM_L1].page == NULL) { // initialize level 1 fence pointer if it is not initialize yet
initFencePtr(LSM_L1);
}
g_lsm_fence_ptr[LSM_L1].curr_page_size++;
g_lsm_fence_ptr[LSM_L1].page[g_lsm_fence_ptr[LSM_L1].curr_page_size - 1].pairCount = header.pairCount;
g_lsm_fence_ptr[LSM_L1].page[g_lsm_fence_ptr[LSM_L1].curr_page_size - 1].min = header.min;
g_lsm_fence_ptr[LSM_L1].page[g_lsm_fence_ptr[LSM_L1].curr_page_size - 1].max = header.max;
}
runHeader merge_sort(node** buckets, int size, node** result)
{
node* sortedNodes = NULL;
node* head = NULL;
node* tail = NULL;
runHeader header;
int count = 0;
for(int i = 0; i < size; i++) {
if(buckets[i] != NULL) {
node* list = buckets[i];
while(list) {
node* newNode = createNode(list->keyValue.key, list->keyValue.value, list->keyValue.state);
if(sortedNodes == NULL) {
// first entry
sortedNodes = newNode;
head = newNode;
tail = newNode;
count++;
} else {
node* cursor = head;
if(newNode->keyValue.key < head->keyValue.key) {
// node* temp = head;
newNode->next = (struct node*)head;
head = newNode;
count++;
} else if(newNode->keyValue.key > tail->keyValue.key) {
tail->next = (struct node*)newNode;
tail = newNode;
count++;
} else {
// node is between head and tail
while(cursor) {
node* next_cursor = (node*)cursor->next;
if(newNode->keyValue.key > cursor->keyValue.key &&
newNode->keyValue.key < next_cursor->keyValue.key) {
node* temp = (node*)cursor->next;
cursor->next = (struct node*)newNode;
newNode->next = (struct node*)temp;
count++;
break;
}
cursor = (node*)cursor->next;
}
}
}
list = (node*)list->next;
}
}
}
*result = head;
header.pairCount = size;
header.min = head->keyValue.key;
header.max = tail->keyValue.key;
return header;
}
void printLinkedList(node* nodes)
{
node* cursor = nodes;
while(cursor) {
printf("%d:%d ", cursor->keyValue.key, cursor->keyValue.value);
cursor = (node*)nodes->next;
}
}
hashTable* range(lsm* tree, int from, int to)
{
if(tree->max_thread == SINGLE_THREAD) {
return single_thread_range(tree, from, to);
} else {
return multi_thread_range(tree, from, to);
}
}
hashTable* single_thread_range(lsm* tree, int from, int to)
{
int total_search_items = to - from;
int total_found_items = 0;
int level_size = tree->max_level;
// init hashtable to store result
hashTable* result = createTable(tree->l0->size);
// Search in memory first
for(int32_t key = from; key < to; key++) {
pair value = look(tree->l0, key);
// add to result table if found
if(value.state != UNKNOWN) {
node* newNode = createNode(value.key, value.value, value.state);
add(result, newNode);
total_found_items++;
}
}
// if there's still item needs to be found
// Create thread to search for candidate block
// at each level
if(total_found_items != total_search_items) {
linked_list** page_num_list = calloc(level_size, sizeof(linked_list*) + 2);
for(int current_level = 0; current_level < level_size; current_level++) {
void* temp = NULL;
search_arg* fence_ptr_search_arg = malloc(sizeof(search_arg));
fence_ptr_search_arg->level = current_level;
fence_ptr_search_arg->range_from = from;
fence_ptr_search_arg->range_to = to;
// Search the fence pointer
temp = search_level_for_range(fence_ptr_search_arg);
page_num_list[current_level] = (linked_list*)temp;
linked_list* page = page_num_list[current_level];
// if found pages with possible values and number of found items is lesser than expected
while(page != NULL && (total_found_items < total_search_items)) {
// Search the disk based on possible page location
char* filename = NULL;
getFileName(current_level, &filename);
run* disk_page = NULL;
read_a_page(filename, page->value, tree->l0->size, &disk_page);
free(filename);
filename = NULL;
search_arg* page_search_arg = malloc(sizeof(search_arg));
page_search_arg->range_from = from;
page_search_arg->range_to = to;
page_search_arg->level = current_level;
page_search_arg->disk_page = disk_page;
page_search_arg->page_num = page->value;
page_search_arg->result = result;
search_page_for_range(page_search_arg);
page = (linked_list*)page->next;
free(disk_page);
disk_page = NULL;
}
}
}
return result;
}
hashTable* multi_thread_range(lsm* tree, int from, int to)
{
int level_size = tree->max_level;
int total_search_items = to - from;
int total_found_items = 0;
int max_thread_count = (int)tree->max_thread;
// init hashtable to store result
hashTable* result = createTable(tree->l0->size);
// Search in memory first
for(int32_t key = from; key < to; key++) {
pair value = look(tree->l0, key);
// add to result table if found
if(value.state != UNKNOWN) {
node* newNode = createNode(value.key, value.value, value.state);
add(result, newNode);
total_found_items++;
}
}
// if there's still item needs to be found
if(total_found_items != total_search_items) {
pthread_t* search_threads = malloc(sizeof(pthread_t) * tree->max_thread);
linked_list** page_num_list = calloc(level_size, sizeof(linked_list*) + 2);
int thread_still_running = FALSE;
int scanning_in_progress = TRUE;
int current_level = 0;
int thread_count = 0;
// Create a lookup table to store thread information
int* thread_lookup_table = malloc(max_thread_count * sizeof(int*));
// Create thread to search for candidate block
// at each level
while(thread_still_running || scanning_in_progress) {
// if all thread is used, wait for them to complete
if(thread_count == max_thread_count || !scanning_in_progress) {
for(int thread_num = 0; thread_num < thread_count; thread_num++) {
void* temp = NULL;
pthread_join(search_threads[thread_num], &temp);
int level = thread_lookup_table[thread_num];
page_num_list[level] = (linked_list*)temp;
}
// reset thread count
thread_count = 0;
thread_still_running = FALSE;
}
if(current_level < level_size) {
search_arg* arg = malloc(sizeof(search_arg));
arg->level = current_level;
arg->id = thread_count;
arg->range_from = from;
arg->range_to = to;
// register thread in thread lookup table
thread_lookup_table[thread_count] = current_level;
if(pthread_create(&search_threads[thread_count], NULL, search_level_for_range, arg) != 0) {
printf("%s", ERROR_CREATING_THREAD);
}
current_level++;
thread_count++;
thread_still_running = TRUE;
} else {
scanning_in_progress = FALSE;
}
}
// For each level, we retrieve the potential page and perform search
for(int level = 0; level < level_size; level++) {
char* filename = NULL;
getFileName(level, &filename);
linked_list* page = page_num_list[level];
while(page != NULL) {
run* disk_page = NULL;
read_a_page(filename, page->value, tree->l0->size, &disk_page);
// split the range and search from page
// calculate number of loop to complete the search
int increment = total_search_items / max_thread_count;
int from_key = from;
int to_key = 0;
int total_loop = increment;
if(increment == 0)
to_key = to;
else
to_key = from_key + increment;
// add 1 for odd number of items
if(total_search_items % max_thread_count != 0) {
total_loop++;
}
for(int count = 0; count < max_thread_count; count++) {
search_arg* arg = malloc(sizeof(search_arg));
arg->range_from = from_key;
arg->range_to = to_key;
arg->id = count;
arg->level = level;
arg->disk_page = disk_page;
arg->page_num = page->value;
arg->result = result;
if(pthread_create(&search_threads[count], NULL, search_page_for_range, arg) != 0) {
printf("%s", ERROR_CREATING_THREAD);
}
from_key = to_key + 1;
int temp = from_key + increment;
if(temp > to)
to_key = to;
else
to_key += increment;
}
// Join back the thread
for(int count = 0; count < max_thread_count; count++) {
pthread_join(search_threads[count], NULL);
}
page = (linked_list*)page->next;
free(disk_page);
disk_page = NULL;
}
free(filename);
filename = NULL;
}
// release page_num_list memory
for(int k = 0; k < level_size; k++) {
linked_list* head = page_num_list[k];
while(head != NULL) {
linked_list* temp = (linked_list*)head;
head = (linked_list*)head->next;
free(temp);
}
}
free(search_threads);
free(page_num_list);
}
return result;
}
int binary_search(pair* list, int lower_b, int upper_b, int key)
{
if(upper_b >= lower_b) {
int mid = lower_b + (upper_b - lower_b) / 2;
if(list[mid].key == key) {
return mid;
}
if(list[mid].key > key)
return binary_search(list, lower_b, mid - 1, key);
return binary_search(list, mid + 1, upper_b, key);
}
return -1;
}
void* search_page_for_range(void* arguments)
{
search_arg* args = (search_arg*)arguments;
int from = args->range_from;
int to = args->range_to;
int level = args->level;
int page_num = args->page_num;
run* page = args->disk_page;
hashTable* result = args->result;
node* result_nodes = NULL;
for(int key = from; key < to; key++) {
pair item = look(result, key);
// if key is not in current result and match with bloom filter
if(item.state == UNKNOWN && contains(level, page_num, key) == TRUE) {
int key_loc = binary_search(page->keyValue, 0, page->header.pairCount - 1, key);
if(key_loc > -1) {
node* newNode = createNode(
page->keyValue[key_loc].key, page->keyValue[key_loc].value, page->keyValue[key_loc].state);
if(result_nodes == NULL) {
result_nodes = newNode;
} else {
result_nodes->next = (struct node*)newNode;
result_nodes = (node*)result_nodes->next;
}
add(result, newNode);
}
}
}
args->result = NULL;
args->disk_page = NULL;
free(args);
return (void*)NULL;
}
void* search_level_for_range(void* arguments)
{
search_arg* args = (search_arg*)arguments;
uint32_t level = args->level;
int from = args->range_from;
int to = args->range_to;
free(args);
int max_page_num = g_lsm_fence_ptr[level].curr_page_size - 1;
linked_list* cursor = NULL;
linked_list* list = NULL;
for(int highest_page_num = max_page_num; highest_page_num >= 0; highest_page_num--) {
for(int key = from; key < to; key++) {
if((key > g_lsm_fence_ptr[level].page[highest_page_num].min &&
key < g_lsm_fence_ptr[level].page[highest_page_num].max) ||
key == g_lsm_fence_ptr[level].page[highest_page_num].min ||
key == g_lsm_fence_ptr[level].page[highest_page_num].max) {
if(contains(level, highest_page_num, key) == TRUE) {
linked_list* newList = (linked_list*)malloc(sizeof(linked_list));
newList->value = highest_page_num;
newList->next = NULL;
if(list == NULL) {
list = newList;
cursor = list;
} else {
cursor->next = (struct linked_list*)newList;
cursor = (linked_list*)cursor->next;
}
// exit loop;
// we don't need to check if all the range is in the page since
// we will read the entire page from the disk
break;
}
}
}
}
return (void*)list;
}
void printTree(lsm* tree)
{
printf("Level 0:");
int l0_size = (int)tree->l0->size;
for(int i = 0; i < l0_size; i++) {
printf("\n\tBucket %d:", i);
node* ptr = tree->l0->bucket[i];
while(ptr) {
printf("[%d:%d:V/I=%c]\t", ptr->keyValue.key, ptr->keyValue.value,
convert_bucket_state_to_char(ptr->keyValue.state));
ptr = (node*)ptr->next;
}
printf("\n");
}
for(uint32_t j = 0; j < tree->max_level; j++) {
if(g_lsm_fence_ptr[j].curr_page_size > 0) {
printf("Level %d:\n", j + 1);
for(uint32_t k = 0; k < g_lsm_fence_ptr[j].curr_page_size; k++) {
char* filename = NULL;
getFileName(j, &filename);
run* page = NULL;
read_a_page(filename, k, tree->l0->size, &page);
printf("\tPage %d: ", k);
for(uint32_t l = 0; l < page->header.pairCount; l++) {
printf("[%d:%d:V/I=%c]\t", page->keyValue[l].key, page->keyValue[l].value,
convert_bucket_state_to_char((int)page->keyValue[l].state));
}
printf("\n");
free(page);
page = NULL;
free(filename);
filename = NULL;
}
printf("\n");
}
}
for(uint32_t level = 0; level < tree->max_level; level++) {
if(g_lsm_fence_ptr[level].curr_page_size > 0) {
printf("Fence pointer for Level [%d] :\n", level + 1);
printf("\t current page size : %d\n", g_lsm_fence_ptr[level].curr_page_size);
for(uint32_t fence = 0; fence < g_lsm_fence_ptr[level].curr_page_size; fence++) {
printf("\t\t page :%d\n", fence);
printf("\t\t count : %d\n", g_lsm_fence_ptr[level].page[fence].pairCount);
printf("\t\t Min: %d\n", g_lsm_fence_ptr[level].page[fence].min);
printf("\t\t Max: %d\n", g_lsm_fence_ptr[level].page[fence].max);
printf("\t\t -------\n");
}
}
}
}
char convert_bucket_state_to_char(int int_state)
{
char bucket_status;
if(int_state == TRUE)
bucket_status = 'V';
else
bucket_status = 'I';
return bucket_status;
}