-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_dcae.py
executable file
·278 lines (215 loc) · 11.8 KB
/
train_dcae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import argparse
import gc
import os
import shutil
import torch
import torch.utils.checkpoint
from accelerate import Accelerator, DistributedDataParallelKwargs
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from omegaconf import OmegaConf
from transformers import get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup
from far.data import build_dataset
from far.trainers import build_trainer
from far.utils.logger_util import MessageLogger, dict2str, reduce_loss_dict, set_path_logger, setup_wandb
def train(args):
# load config
opt = OmegaConf.to_container(OmegaConf.load(args.opt), resolve=True)
# set accelerator
accelerator = Accelerator(mixed_precision=opt['mixed_precision'], kwargs_handlers=[DistributedDataParallelKwargs(find_unused_parameters=True)])
# set experiment dir
with accelerator.main_process_first():
set_path_logger(accelerator, args.opt, opt, is_train=True)
# get logger
logger = get_logger('far', log_level='INFO')
logger.info(accelerator.state)
logger.info(dict2str(opt))
# get wandb
if accelerator.is_main_process and opt['logger'].get('use_wandb', False):
wandb_logger = setup_wandb(name=opt['name'], save_dir=opt['path']['log'])
else:
wandb_logger = None
# If passed along, set the training seed now.
if opt.get('manual_seed') is not None:
set_seed(opt['manual_seed'] + accelerator.process_index)
# load trainer pipeline
train_pipeline = build_trainer(opt['train']['train_pipeline'])(**opt['models'], accelerator=accelerator)
# set optimizer
train_opt = opt['train']
optim_g_type, optim_d_type = train_opt['optim_g'].pop('type'), train_opt['optim_d'].pop('type')
assert optim_g_type == optim_d_type == 'AdamW', 'only support AdamW now'
G_params_to_optimize, D_params_to_optimize = train_pipeline.get_params_to_optimize(train_opt['param_names_to_optimize'])
optimizer_g = torch.optim.AdamW(G_params_to_optimize, **train_opt['optim_g'])
optimizer_d = torch.optim.AdamW(D_params_to_optimize, **train_opt['optim_d'])
# Get the training dataset
trainset_cfg = opt['datasets']['train']
train_dataset = build_dataset(trainset_cfg)
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=trainset_cfg['batch_size_per_gpu'], shuffle=True, drop_last=True, num_workers=8, pin_memory=True)
if opt['datasets'].get('sample'):
sampleset_cfg = opt['datasets']['sample']
sample_dataset = build_dataset(sampleset_cfg)
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=sampleset_cfg['batch_size_per_gpu'], shuffle=False)
else:
sample_dataloader = None
# Prepare learning rate scheduler in accelerate config
total_batch_size = opt['datasets']['train']['batch_size_per_gpu'] * accelerator.num_processes
num_training_steps = total_iter = opt['train']['total_iter']
num_warmup_steps = opt['train']['warmup_iter']
if opt['train']['lr_scheduler'] == 'constant_with_warmup':
lr_scheduler_g = get_constant_schedule_with_warmup(
optimizer=optimizer_g,
num_warmup_steps=num_warmup_steps,
)
lr_scheduler_d = get_constant_schedule_with_warmup(
optimizer=optimizer_d,
num_warmup_steps=num_warmup_steps,
)
elif opt['train']['lr_scheduler'] == 'cosine_with_warmup':
lr_scheduler_g = get_cosine_schedule_with_warmup(
optimizer=optimizer_g,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
)
lr_scheduler_d = get_cosine_schedule_with_warmup(
optimizer=optimizer_d,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
)
else:
raise NotImplementedError
# Prepare everything with our `accelerator`.
train_pipeline.model, train_pipeline.discriminator, optimizer_g, optimizer_d, train_dataloader, sample_dataloader, lr_scheduler_g, lr_scheduler_d = accelerator.prepare( # noqa: E501
train_pipeline.model, train_pipeline.discriminator, optimizer_g, optimizer_d, train_dataloader, sample_dataloader, lr_scheduler_g, lr_scheduler_d)
# set ema after prepare everything: sync the model init weight in ema
train_pipeline.set_ema_model(ema_decay=opt['train'].get('ema_decay'))
# Train!
logger.info('***** Running training *****')
logger.info(f' Num examples = {len(train_dataset)}')
logger.info(f" Instantaneous batch size per device = {opt['datasets']['train']['batch_size_per_gpu']}")
logger.info(f' Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}')
logger.info(f' Total optimization steps = {total_iter}')
if opt['path'].get('pretrain_network', None):
load_path = opt['path'].get('pretrain_network')
else:
load_path = opt['path']['models']
global_step = resume_checkpoint(args, accelerator, load_path, train_pipeline)
def make_data_yielder(dataloader):
while True:
for batch in dataloader:
yield batch
accelerator.wait_for_everyone()
train_data_yielder = make_data_yielder(train_dataloader)
msg_logger = MessageLogger(opt, global_step)
while global_step < total_iter:
batch = next(train_data_yielder)
"""************************* start of an iteration*******************************"""
# update generator loss
loss_dict = train_pipeline.train_step(batch, iters=global_step)
accelerator.backward(loss_dict['total_loss'])
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(train_pipeline.model.parameters(), opt['train']['max_grad_norm'])
optimizer_g.step()
lr_scheduler_g.step()
optimizer_g.zero_grad()
optimizer_d.step()
lr_scheduler_d.step()
optimizer_d.zero_grad()
"""************************* end of an iteration*******************************"""
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
if train_pipeline.ema is not None:
train_pipeline.ema.step(accelerator.unwrap_model(train_pipeline.model))
global_step += 1
if global_step % opt['logger']['print_freq'] == 0:
log_dict = reduce_loss_dict(accelerator, loss_dict)
log_vars = {'iter': global_step}
log_vars.update({'lrs': lr_scheduler_g.get_last_lr()})
log_vars.update(log_dict)
msg_logger(log_vars)
if accelerator.is_main_process and wandb_logger:
wandb_log_dict = {
f'train/{k}': v
for k, v in log_vars.items()
}
wandb_log_dict['train/lrs_g'] = lr_scheduler_g.get_last_lr()[0]
wandb_log_dict['train/lrs_d'] = lr_scheduler_d.get_last_lr()[0]
wandb_logger.log(wandb_log_dict, step=global_step)
if global_step % opt['val']['val_freq'] == 0 or global_step == total_iter:
if sample_dataloader is not None:
train_pipeline.sample(sample_dataloader, opt, wandb_logger=wandb_logger, global_step=global_step)
accelerator.wait_for_everyone()
if accelerator.is_main_process and 'eval_cfg' in opt['val']:
result_dict = train_pipeline.eval_performance(opt, global_step=global_step)
logger.info(result_dict)
if wandb_logger:
wandb_log_dict = {
f'eval/{k}': v
for k, v in result_dict.items()
}
wandb_logger.log(wandb_log_dict, step=global_step)
accelerator.wait_for_everyone()
gc.collect()
torch.cuda.empty_cache()
if accelerator.is_main_process and (global_step % opt['logger']['save_checkpoint_freq'] == 0 or global_step == total_iter):
save_checkpoint(args, logger, accelerator, train_pipeline, global_step, opt['path']['models'])
def resume_checkpoint(args, accelerator, output_dir, train_pipeline):
global_step = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != 'latest':
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(output_dir)
dirs = [d for d in dirs if d.startswith('checkpoint')]
dirs = sorted(dirs, key=lambda x: int(x.split('-')[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
accelerator.print(f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run.")
args.resume_from_checkpoint = None
else:
accelerator.print(f'Resuming from checkpoint {path}')
accelerator.load_state(os.path.join(output_dir, path))
global_step = int(path.split('-')[1])
if train_pipeline.ema is not None:
accelerator.print(f'Resuming ema from checkpoint {path}')
ema_state = torch.load(os.path.join(output_dir, path, 'ema.pth'), weights_only=True)
ema_state_dict = train_pipeline.ema.state_dict()
model_state_dict = accelerator.unwrap_model(train_pipeline.model).state_dict()
for key in set(model_state_dict.keys()) - set(ema_state_dict.keys()):
del ema_state[key]
train_pipeline.ema.load_state_dict(ema_state)
return global_step
def save_checkpoint(args, logger, accelerator, train_pipeline, global_step, output_dir):
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if args.checkpoints_total_limit is not None:
checkpoints = os.listdir(output_dir)
checkpoints = [d for d in checkpoints if d.startswith('checkpoint')]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split('-')[1]))
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
if len(checkpoints) >= args.checkpoints_total_limit:
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
removing_checkpoints = checkpoints[0:num_to_remove]
logger.info(f'{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints')
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(output_dir, removing_checkpoint)
shutil.rmtree(removing_checkpoint)
save_path = os.path.join(output_dir, f'checkpoint-{global_step}')
accelerator.save_state(save_path)
logger.info(f'Saved state to {save_path}')
if train_pipeline.ema is not None:
ema_state_dict = train_pipeline.ema.state_dict()
model_state_dict = accelerator.unwrap_model(train_pipeline.model).state_dict()
for key in set(model_state_dict.keys()) - set(ema_state_dict.keys()):
ema_state_dict[key] = model_state_dict[key]
torch.save(ema_state_dict, os.path.join(save_path, 'ema.pth'))
logger.info(f'Saved ema model to {save_path}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, default=None)
parser.add_argument('--resume_from_checkpoint', type=str, default='latest')
parser.add_argument('--checkpoints_total_limit', type=int, default=None, help=('Max number of checkpoints to store.'))
args = parser.parse_args()
train(args)