-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining_model.py
53 lines (42 loc) · 1.41 KB
/
training_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
lr = 0.01
def plot_data_graph(df):
plt.scatter(df["km"], df["price"], color='b')
plt.title("Dataset")
plt.xlabel("mileage")
plt.ylabel("price")
plt.savefig('data.png')
def plot_line(df, y_pred):
plt.scatter(df["km"], df["price"], color='b')
plt.plot(df["km"], y_pred, color="r")
plt.title("Regression line")
plt.xlabel("mileage")
plt.ylabel("price")
plt.savefig('result.png')
def estimate_price(theta, x):
return theta[0] + theta[1] * x
def gradient_descent(y_pred, df, x, tmp_theta):
tmp_theta[0] -= lr / df.shape[0] * np.sum(y_pred - df["price"])
tmp_theta[1] -= lr / df.shape[0] * np.sum((y_pred - df["price"]) * x)
return tmp_theta
def min_max_scaler(x, dataset):
x_min = dataset.min()
x_max = dataset.max()
return (x - x_min) / (x_max - x_min)
def fit(df, epochs = 5000):
tmp_theta = [ 0 for i in range(2)]
x = min_max_scaler(df["km"], df["km"])
for i in range(epochs):
y_pred = estimate_price(tmp_theta, x)
tmp_theta = gradient_descent(y_pred, df, x, tmp_theta)
plot_line(df, y_pred)
return tmp_theta
if __name__ == '__main__':
df = pd.read_csv('data.csv', delimiter=',')
plot_data_graph(df)
columns = ['theta']
index = [0, 1]
theta = pd.DataFrame(fit(df, 5000), index, columns)
theta.to_csv('theta.csv')