-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathModel_free.py
222 lines (200 loc) · 7.8 KB
/
Model_free.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
'''
revuresnet.py taken from implementation of ShapeHD
'''
import numpy as np
import torch
from torch import nn
import torchvision.models as models
import torchvision
from revuresnet18 import revuresnet18
import matplotlib.pyplot as plt
from skimage import measure
import os
import cv2
import sys
import warnings
warnings.filterwarnings('ignore')
class Model2p5d(torch.nn.Module):
def __init__(self):
super(Model2p5d, self).__init__()
self.model = models.resnet18(pretrained = True)
module_list = list()
in_conv = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
module_list.append(
nn.Sequential(
in_conv,
self.model.bn1,
self.model.relu,
self.model.maxpool
)
)
module_list.append(self.model.layer1)
module_list.append(self.model.layer2)
module_list.append(self.model.layer3)
module_list.append(self.model.layer4)
self.encoder = nn.ModuleList(module_list)
out_planes = [3,1,1]
layer_names = ['normal','depth','sil']
self.decoders = {}
for out_plane, layer_name in zip(out_planes, layer_names):
module_list2 = list()
revresnet = revuresnet18(out_planes=out_plane)
module_list2.append(revresnet.layer1)
module_list2.append(revresnet.layer2)
module_list2.append(revresnet.layer3)
module_list2.append(revresnet.layer4)
module_list2.append(
nn.Sequential(
revresnet.deconv1,
revresnet.bn1,
revresnet.relu,
revresnet.deconv2
)
)
module_list2 = nn.ModuleList(module_list2)
setattr(self, 'decoder_' + layer_name, module_list2)
self.decoders[layer_name] = module_list2
def forward(self,im):
feat = im
feat_maps = list()
for f in self.encoder:
feat = f(feat)
feat_maps.append(feat)
self.encoder_out = feat_maps[-1]
outputs = {}
for layer_name, decoder in self.decoders.items():
x = feat_maps[-1]
for idx, f in enumerate(decoder):
x = f(x)
if idx < len(decoder) - 1:
feat_map = feat_maps[-(idx + 2)]
assert feat_map.shape[2:4] == x.shape[2:4]
x = torch.cat((x, feat_map), dim=1)
outputs[layer_name] = x
return outputs
class Model3d(torch.nn.Module):
def __init__(self):
super(Model3d, self).__init__()
self.model = models.resnet18(pretrained = True)
self.model.conv1 = nn.Conv2d(4, 64, 7, stride=2, padding=3, bias=False)
self.model.avgpool = nn.AdaptiveAvgPool2d(1)
self.model.fc = nn.Linear(512, 200)
self.encoder = nn.Sequential(self.model)
n_dims=200;
nf=512;
self.decoder = nn.Sequential(
nn.ConvTranspose3d(n_dims, nf, 4, stride=1, padding=0, dilation=1, groups=1, bias=True),
nn.BatchNorm3d(nf, eps=1e-5, momentum=0.1, affine=True),
nn.ReLU(inplace=True),
nn.ConvTranspose3d(nf, nf//2, 4, stride=2, padding=1, dilation=1, groups=1, bias=True),
nn.BatchNorm3d(nf//2, eps=1e-5, momentum=0.1, affine=True),
nn.ReLU(inplace=True),
nn.ConvTranspose3d(nf//2, nf//4, 4, stride=2, padding=1, dilation=1, groups=1, bias=True),
nn.BatchNorm3d(nf//4, eps=1e-5, momentum=0.1, affine=True),
nn.ReLU(inplace=True),
nn.ConvTranspose3d(nf//4, nf//8, 4, stride=2, padding=1, dilation=1, groups=1, bias=True),
nn.BatchNorm3d(nf//8, eps=1e-5, momentum=0.1, affine=True),
nn.ReLU(inplace=True),
nn.ConvTranspose3d(nf//8, nf//16, 4, stride=2, padding=1, dilation=1, groups=1, bias=True),
nn.BatchNorm3d(nf//16, eps=1e-5, momentum=0.1, affine=True),
nn.ReLU(inplace=True),
nn.ConvTranspose3d(nf//16, 1, 4, stride=2, padding=1, dilation=1, groups=1, bias=True)
)
def forward(self,x):
latent_vec = self.encoder(x.float())
latent_vec = latent_vec.view(latent_vec.size(0), -1, 1, 1, 1)
vox = self.decoder(latent_vec)
return vox;
def to_obj_str(verts, faces):
text = ""
for p in verts:
text += "v "
for x in p:
text += "{} ".format(x)
text += "\n"
for f in faces:
text += "f "
for x in f:
text += "{} ".format(x + 1)
text += "\n"
return text
def save_iso_obj(df, path, th, shift=True):
if th < np.min(df):
df[0, 0, 0] = th - 1
if th > np.max(df):
df[-1, -1, -1] = th + 1
spacing = (1 / 128, 1 / 128, 1 / 128)
verts, faces, _, _ = measure.marching_cubes_lewiner(df, th, spacing=spacing)
if shift:
verts -= np.array([0.5, 0.5, 0.5])
obj_str = to_obj_str(verts, faces)
with open(path, 'w') as f:
f.write(obj_str)
def vis_voxel(voxels, path, counter=0, th=0.25, use_sigmoid=True):
m = nn.Sigmoid()
voxels = m(voxels)
voxels = voxels.detach().numpy().squeeze()
save_iso_obj(voxels, path, th=th)
weights_2p5d = Model2p5d()
weights_2p5d.load_state_dict(torch.load('models/first_module.pth', map_location=torch.device('cpu')))
weights_25d = Model2p5d()
weights_25d.load_state_dict(torch.load('models/first_module_.pth', map_location=torch.device('cpu')))
weights_3d = Model3d()
weights_3d.load_state_dict(torch.load('models/second_module.pth', map_location=torch.device('cpu')))
os.system('rm -rf 2p5d_results')
os.system('mkdir 2p5d_results')
os.system('rm -rf 3D_models')
os.system('mkdir 3D_models')
########### 2D ---> 2.5D #############
input_path = sys.argv[1]
img = cv2.imread(input_path)
img = cv2.resize(img, (256,256))
transform = torchvision.transforms.ToTensor()
test_img = transform(img).unsqueeze(0)
output = weights_2p5d(test_img)
output1 = weights_25d(test_img)
normal = output1['normal'].detach().numpy().squeeze().transpose(1,2,0)
depth = output['depth'].detach().numpy().squeeze()
sil = output['sil'].detach().numpy().squeeze()
fig = plt.figure()
plt.imshow(output1['normal'].detach().numpy().squeeze().transpose(1,2,0))
fig.savefig('2p5d_results/normal_sample.jpg')
fig = plt.figure()
plt.imshow(output['depth'].detach().numpy().squeeze())
fig.savefig('2p5d_results/depth_sample.jpg')
fig = plt.figure()
plt.imshow(output['sil'].detach().numpy().squeeze())
fig.savefig('2p5d_results/sil_sample.jpg')
########### 2.5D ---> 3D #############
normal_img1 = cv2.imread('2p5d_results/normal_sample.jpg')
normal_img1 = cv2.resize(normal_img1, (256,256))
transform = torchvision.transforms.ToTensor()
normal_img1 = transform(normal_img1).unsqueeze(0)
depth_img1 = cv2.imread('2p5d_results/depth_sample.jpg')
depth_img1 = cv2.resize(depth_img1, (256,256))
transform = torchvision.transforms.ToTensor()
depth_img1 = transform(depth_img1[:,:,0]).unsqueeze(0)
sil_img1 = cv2.imread('2p5d_results/sil_sample.jpg')
sil_img1 = cv2.resize(sil_img1, (256,256))
transform = torchvision.transforms.ToTensor()
sil_img1 = transform(sil_img1[:,:,0]).unsqueeze(0)
is_bg = sil_img1 <= 0
depth_img1[is_bg] = 0
normal_img1[is_bg.repeat(1, 3, 1, 1)] = 0
x = torch.cat((depth_img1, normal_img1), 1)
V = weights_3d(x)
if len(sys.argv) == 3:
outpath = sys.argv[2]
vis_voxel(V, outpath)
else:
vis_voxel(V,'3D_models/3D_sample.obj')
thres = np.where(V<-1.2, 0, 1).squeeze()
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
z,x,y = thres.nonzero()
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x, y, -z, zdir='z', c = 'red')
ax.view_init(azim=45)
fig.savefig('3D_models/3D_user_plot.png')
os.system('display 3D_models/3D_user_plot.png')